Subject Code: 3140110

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV EXAMINATION - SUMMER 2025

Date:08-05-2025

Time	e: 10	Name: Fluid Mechanics 0:30 AM TO 01:00 PM Total Mar	ks:70
Instru	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
			Marks
Q.1	(a)	Define the following fluid properties: a) Density b) Viscosity c) Specific Volume	03
	(b)	, , 1	04
	(c)	A cubical block of 20 cm edge and weight 20 N is allowed to slide down a plane inclined at 20° to the horizontal on which there is thin film of oil of viscosity 0.22×10^{-3} N-s/m ² . What terminal velocity will be attained by the block if the fill thickness is estimated to be 0.025 mm?	07
Q.2	(a)	Find the depth of a point below water surface in sea where pressure intensity is 1.006 MN/m^2 . Specific gravity of sea water = 1.025 .	03
	(b)	Prove that the pressure is the same in all directions at a point in a static fluid.	04
	(c)	Derive an expression for the force exerted on a submerged vertical plane surface by the static fluid and locate the position of center of pressure.	07
		OR	
	(c)	Describe briefly the experimental method of determination of the metacentric height of a floating object.	07
Q.3	(a)	Define: Streamline, Path line and streak line in a fluid flow.	03
	(b)	A stream function is given by $\psi = 3x^2 - y^3$. Determine the magnitude of velocity components at the point (2,1)	04
	(c)	State and derive Bernoulli's theorem, mentioning clearly the assumptions underlying it.	07
		OR	
Q.3	(a)	Distinguish between laminar flow and turbulent flow.	03
	(b)	A 0.5 m diameter pipe carries oil of specific gravity 0.8 at the rate of 120 litres per second and the gauge pressure at a point A is 19.62 kN/m ² . If the point A is 3.5 m above the datum line, calculate the total energy at point A in metres of oil.	04
	(c)	•	07

Q.4	(a)	What is meant by geometric, kinematic and dynamic similarities?	03
	(b)	Define following dimensionless numbers:	
		1) Reynold's Number	04
		2) Mach Number	
	(c)	Describe the Rayleigh's Method for dimensional analysis with example.	07
		OR	
Q.4	(a)	Define the Terms:	
		1) Lift	03
		2) Drag	US
		3) Terminal Velocity	
	(b)	Explain the terms:	
		1) Hydraulic Gradient Line	04
		2) Total Energy Line	
	(c)	For Laminar flow of an oil having dynamic viscosity $\mu = 1.766$ Pa-s in a	
		0.3 m diameter pipe, the velocity distribution is parabolic with a	
		maximum point velocity of 3 m/s at the centre of the pipe. Calculate the	07
		shearing stresses at the pipe wall and within the fluid 50 mm from the	
		pipe wall.	
Q.5	(a)	Explain working of pitot tube.	03
	(b)	What do you understand by Major and Minor energy losses in pipe flow?	04
	(c)	What is meant by water hammer? Obtain an expression for the rise in	
		pressure in a thin elastic pipe of circular section in which the flow of	07
		water is stopped by sudden closure of valve.	
		OR	
Q.5	(a)	What you do understand by Coutte flow?	03
	(b)	Define Kinetic energy correction factor.	04
	(c)	Define displacement thickness. Derive an expression for displacement	
	(0)	thickness.	07
		diferite of	