Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV(NEW) EXAMINATION - SUMMER 2023

Subject Code:3140110	Date:07-07-2023
Subject Name: Fluid Mechanics	

Subject Name: Fluid Mechanics

Time:10:30 AM TO 01:00 PM	Total Marks:70
Instructions:	

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS		
Q.1	(a) (b) (c)	Define: Total Pressure, Centre of Pressure and buoyancy. Differentiate Ideal and Real Fluids. Explain working of U-tube Differential manometer.	03 04 07		
Q.2	(a) (b) (c)	Define: Weight density, Metacentre, Metacentric height State and prove Pascal's Law Derive continuity equation for 2-D & 3-D flow in Cartesian coordinates.	03 04 07		
	(c)	OR Derive an expression for rate of flow through venturimeter.	07		
Q.3	(a)	Derive the expression of velocity potential function and stream function for a linear flow.	03		
	(b) (c)	Explain Surface Tension Phenomena in detail. Define notch and weir. Derive an expression for discharge over triangular notch section.	04 07		
Q.3	(a) (b) (c)	OR What is Reynold's Number? Explain its physical significance. Derive an expression for power absorbed in Journal earing. Derive an expression for discharge over trapezoidal notch section.			
Q.4	(a) (b) (c)	Define circulation and velocity potential function. Explain working of Pitot Tube. Derive an expression for total pressure and centre of pressure on a plane surface immersed in a liquid.			
Q.4	(a) (b) (c)	ORCompare Eulerian and Lagrangian frame of reference.0Explain in brief the losses in flow through pipes.0Explain step by step procedure of Buckingham's π -theorem.0			
Q.5	(a) (b) (c)	Explain the need of inclined column manometers. Explain Laminar and Turbulent boundary layer. Derive an expressions shear stress and velocity for HAGENPOISEVILLE L	03 04 07		

Q.5	(a)	Define Laminar Sub layer.	03
	(b)	Write a note on Stability of floating bodies.	04
	(c)	Derive Darchy Weishbach's equation	07
