GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-V (NEW) EXAMINATION – WINTER 2024

Subject Code:3150107 Date:02-12-2024

Subject Name: Aerodynamics

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Q.1	(a)	Define Kutta Condition.	Marks 03
	(b)	Discuss the effect of flow Separation on characteristics of an airfoil.	04
	(c)	Draw with nomenclature: Suction type subsonic wind tunnel	07
Q.2	(a)	State and explain: Kelvin's Circulation Theorem	03
	(b)	Describe how Bernoulli's principle helps generate lift on an airplane wing.	04
	(c)	Consider an airplane flying at a velocity of 250m/s. Calculate its Mach	07
		number if it is flying at a standard altitude of sea level and 10 km. Take	
		Temperature at 10 km is 223K.	
		OR	
	(c)	Explain Prandtl's classical lifting line theory.	07
Q.3	(a)	Define Vortex filament with suitable diagram.	03
	(b)	Differentiate between Symmetrical and Cambered Airfoil.	04
	(c)	Define Compressible flow. Explain "when is a flow Compressible?" with suitable example.	07
		OR	
Q.3	(a)	What are the main differences between normal and oblique shock waves?	03
	(b)	Explain detached shockwave in front of a blunt body.	04
	(c)	Draw schematics of a supersonic flow over a concave and convex corner.	07
Q.4	(a)	Differentiate between finite and infinite wing.	03
	(b)	Explain the importance of the angle of attack in relation to an aircraft's lift.	04
	(c)	Write continuity, momentum, and energy equation for a normal shock.	07
		OR	
Q.4	(a)	Discuss the aerodynamic characteristics of a delta Wing.	03
	(b)	Derive Speed of Sound equation.	04
	(c)	Analyze the factors that lead to stall and describe how it can be prevented.	07
Q.5	(a)	Write a note on Rarefaction wave.	03
	(b)	Explain supersonic flow over a corner.	04
	(c)	Explain 5 digit of NACA family with appropriate example.	07

Q.5	(a)	What is the Biot-Savart law?	03
	(b)	Write a short note on Development of a shockwave with diagram.	04
	(c)	Consider a supersonic flow with $M = 2$, $p = 1$ atm and $T = 288$ K. This flow is	07
		deflected at a compression corner through 20° . Calculate M , p and T behind the resulting oblique shock wave. Take $\beta = 53.4^{\circ}$.	
