Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION - WINTER 2023

Subject Code:3150107 Date:11-12-2023

Subject Name: Aerodynamics

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			Marks
Q.1	(a)	What is airfoil? Explain Types of airfoil.	03
	(b)	What is NACA airfoil? Explain NACA Series Airfoil with example.	04
	(c)	Explain Airfoil stalling theory with Diagram	07
Q.2	(a)	Explain airfoil Nomenclature with diagram	03
	(b)	Short note on wind tunnel with diagram.	04
	(c)	Explain Vortex sheet with the help of schematic diagram	07
		OR	
	(c)	Explain importance of Kelvin's Circulation Theorem and starting vortex.	07
Q.3	(a)	What are the Applications of airfoil?	03
	(b)	Explain Bio-Savart low for semi infinite vortex.	04
	(c)	Explain Prandtl's Classical Lifting Line Theory and derive induce angle of attack equation.	07
		OR	
Q.3	(a)	Briefly explain - Expansion of supersonic flow	03
	(b)	Explain Helmholtz's theorem and it's observation	04
	(c)	Explain The Vortex Lattice Numerical Method with appropriate diagram	07
Q.4	(a)	Explain Modern low speed airfoil	03
	(b)	Derive fundamentals relations of oblique shock	04
	(c)	Derive fundamental equation of Classical Thin Airfoil Theory OR	07
Q.4	(a)	Explain Horse shoe vortex with diagram.	03
~ ··	(b)	Explain Total condition.	04
	(c)	Explain Numerical Nonlinear Lifting Line Method.	07
Q.5	(a)	Explain Kutta Condition with diagram.	03
	(b)	Write a short note on Development of a shockwave with diagram.	04
	(c)	Explain Prandtl-Meyer relation in flow with normal shock waves.	07

OR

Q.5	(a)	Write a short note on Rarefaction wave.		
	(b)	Derive Rankine-Hugoniot equation for flow with Oblique shock	04	
		wave.		
	(c)	Derive governing equation for inviscid compressible flow	07	
