G . 3.T	T 1
Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION - WINTER 2022

Subject Code:3150107			Date:11-01-2023	
•		Name:Aerodynamics		
Time	:10	:30 AM TO 01:00 PM Total Marks:	70	
Instru				
	1. 2. 3. 4.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.		
Q.1	(a)	What is the application of Airfoils?	03	
	(b) (c)	What is Airfoil Stalling? Explain it with a suitable diagram. Name the different types of Wind Tunnel and explain any one in detail.	04 07	
_	(a)	Define Incompressible flow and Compressible flow.	03	
	(b)	•	04	
	(c)	Explain Classical Thin Airfoil Theory for Symmetrical Airfoil. OR	07	
	(c)	Explain Flow over an airfoil real case.	07	
Q.3	(a)	Define Kelvin's Circulation Theorem	03	
~	(b)		04	
	(c)	Explain the kutta condition with suitable diagram. OR	07	
Q.3	(a)	Explain Biot-Savart Law.	03	
•	(b)		04	
	(c)	Explain Prandtl's classical lifting-line Theory.	07	
Q.4	(a)	Define Vortex flow with suitable diagram.	03	
	(b)	Define Compressible flow. Explain "when is a flow Compressible?" with suitable example.	04	
	(c)	Derive an equation of Speed of Sound. OR	07	
Q.4	(a)	What is critical Mach number and define critical pressure coefficient.	03	
(b) (c)	What is Shock Wave? Write a note on Normal Shock with a suitable diagram.	04		
	(c)	Derive Governing equation for inviscid compressible flow	07	
Q.5	(a)	Consider an airplane flying at a velocity of 250 m/s. Calculate its Mach number if it is flying at a standard altitude of (a) sea level (T=288 k), (b) 5 km (T=255.7 k) and (c) 10 km (T=223.3 k). Take R=287, γ =1.4	03	
	(b)	Explain with figure- reflection and interference of shocks.	04	
	(c)	Explain Prandtl-Meyer relation in flow with normal shock waves	07	
	` /	OR		
Q.5	(a)	What is Oblique Shock? Explain with a neat sketch	03	
	(b)	•	04	
		and static temperature are 3.5, 0.3 atm, and 180 K, respectively. Calculate the local values of p_0 , T_0 , T^* , a*, and M^* at this point. Take $p0/p = 76.27$ and $T0/T = 3.45$, R=287, γ =1.4		
	(c)	– 5.43, K–267, γ–1.4 Derive Rankine-Hugoniot equation for flow with Oblique shock wave	07	
