GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION - SUMMER 2024

Subject Code: 3150107 Date: 21-05-2024

Subject Name: Aerodynamics

Time: 02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1*	(a) (b)	Define Kutta Condition. Explain how Bernoulli's principle contributes to lift in an airplane wing.	03 04
	(c)	Describe the effect of wing shape on air pressure and lift.	07
Q.2	(a)	What are the main differences between normal and oblique shock waves?	03
	(b)	Interpret the significance of the angle of attack in relation to an aircraft's lift.	04
	(c)	Analyze the factors that lead to stall and describe how it can be prevented.	07
		OR	
	(c)	Explain 5 digit of NACA family with appropriate example.	07
Q.3	(a)	What is the Biot-Savart law?	03
V.	(b)	State the conservation equations that apply to shock waves.	04
	(c)	Critique the use of vortex generators in improving aerodynamic	07
	(C)	performance.	07
		OR	
0.2	(0)		02
Q.3	(a)	Summarize the factors that influence the strength of the magnetic field produced by a current-carrying conductor according to the Biot-Savart law.	03
	(b)	Summarize why oblique shock waves are preferable in certain	04
	(D)	aerodynamic designs, like supersonic inlets.	V -1
	(a)	· · · · · · · · · · · · · · · · · · ·	07
	(c)	Develop a concept for a new type of airfoil that could enhance lift or	07
		reduce drag, supported by theoretical principles.	
Q.4	(a)	What is a shock polar diagram?	03
Q1	(b)	Summarize how shock polar diagrams can be used to analyze the effect	04
	(0)	of oblique shocks on supersonic flow.	04
	(c)	Calculate the pressure, temperature, and density changes across a	07
	(C)	normal shock given the upstream conditions and Mach number.	07
		normal shock given the upstream conditions and waen number.	
		OR	
Q.4	(a)	List the conditions under which Helmholtz's theorem holds true.	03
	(b)	Utilize Helmholtz's theorem to solve boundary value problems in fluid	04
		dynamics or electromagnetic.	
	(c)	Analyze the effect of Mach number on the strength of a shock wave.	07
		•	
Q.5	(a)	Define and explain Turbulent flow.	03

	(b)	Develop a practical application or engineering design that leverages	04
	(-)	Helmholtz's theorem to optimize a system's performance.	07
	(c)	Apply the Biot-Savart law to determine the magnetic field produced by a circular current loop at various points along its axis.	07
		OR	
Q.5	(a)	Define and explain laminar flow.	03
	(b)	Discuss effect of aspect ratio on finite wing.	04
	(c)	Derive speed of sound equation.	07
