GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V(NEW) EXAMINATION - SUMMER 2022

Subject Code:3150107 Date:09/06/2022

Subject Name: Aerodynamics

Time:02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			Marks
Q.1	(a)	Briefly Explain Application of airfoil.	03
	(b)	Short note on wind tunnel	04
	(c)	What is NACA airfoil? Explain NACA Series Airfoil with example.	07
Q.2	(a)	Explain Downwash.	03
	(b)	Explain Characteristics of airfoil with airfoil stalling.	04
	(c)	Derive fundamental equation of Classical Thin Airfoil Theory.	07
		OR	
	(c)	Explain Kelvin's Circulation Theorem and starting vortex.	07
Q.3	(a)	Explain bound vortex and Horse shoe vortex with diagram.	03
	(b)	Explain Helmholtz's theorem with lift distribution diagram.	04
	(c)	Explain Vortex sheet with the help of schematic diagram OR	07
Q.3	(a)	Explain Kutta Condition.	03
	(b)	Explain Bio-Savart low for infinite and semi infinite vortex.	04
	(c)	Explain The Vortex Lattice Numerical Method with appropriate diagram	07
Q.4	(a)	Briefly explain - Expansion of supersonic flow	03
	(b)	Derive fundamentals relations of oblique shock	04
	(c)	Explain Prandtl's Classical Lifting Line Theory OR	07
Q.4	(a)	Write a short note on Rarefaction wave	03
	(b)	Explain Modern low speed airfoil	04
	(c)	Derive Governing equation for inviscid compressible flow	07
Q.5	(a)	Explain Total condition.	03
	(b)	Write a short note on Development of a shockwave	04
	(c)	Explain Numerical Nonlinear Lifting Line Method.	07
		OR	
Q.5	(a)	Explain airfoil definition and types of airfoil	03
	(b)	Derive Rankine-Hugoniot equation for flow with Oblique shock wave.	04
	(c)	Explain Prandtl-Meyer relation in flow with normal shock waves.	07
