| Seat No.: | Enrolment No. | |-----------|---------------| | | | ## **GUJARAT TECHNOLOGICAL UNIVERSITY** **BE - SEMESTER-V(NEW) EXAMINATION - SUMMER 2022** Subject Code:3150101 Date:04/06/2022 **Subject Name:Flight Mechanics** Time:02:30 PM TO 05:00 PM Total Marks: 70 ## **Instructions:** - 1. Attempt all questions. - 2. Make suitable assumptions wherever necessary. - 3. Figures to the right indicate full marks. - 4. Simple and non-programmable scientific calculators are allowed. | | | | Marks | |-----|------------|--|-------| | Q.1 | (a) | Define: Geometric Altitude, Absolute Altitude & Geopotential Altitude | 03 | | | (b) | Explain flight in a power-off glide. (Gliding flight) | 04 | | | (c) | What is ISA? Why it is needed? | 07 | | Q.2 | (a) | Define: Range, Endurance, Load Factor | 03 | | | (b) | With neat sketches explain effect of Altitude on Power available and Power required. | 04 | | | (c) | Derive expressions for Range and Endurance for Jet Airplane. OR | 07 | | | (c) | Consider an airplane with following characteristics: Weight= $38,220 \text{ N}$ Wing area= 27.3 m^2 Aspect ratio= $7.5 \text{ e}= 0.9 \text{ C}_{D,0}=0.03$. Density _{4.5 km} = 0.777 kg/m^3 Calculate the thrust required to fly at a velocity of 350 km/hr at 1. Standard sea level 2. An altitude of 4.5 km | 07 | | Q.3 | (a) | Why during hot summer days an airplane requires a longer take-
off distance compared to cooled winter days? | 03 | | | (b) | With neat sketch explain V-n Diagram. | 04 | | | (c) | Derive an expression to calculate Landing distance. OR | 07 | | Q.3 | (a) | What is Static margin? Explain. | 03 | | | (b) | Explain Stick Force gradient. | 04 | | | (c) | Explain the role of Wing sweep in Directional stability. | 07 | | Q.4 | (a) | Define: Static Stability & Dynamic Stability. | 03 | | | (b) | What do you mean by Stable, Unstable and Neutral equilibrium? | 04 | | | (c) | Derive equations for turn radius and turn rate for steady coordinated level turn, Pull-up turn and Pull down turn. OR | 07 | | Q.4 | (a) | What is Adverse Yaw? | 03 | | ~ | (b) | Explain Dihedral effect. | 04 | | | (c) | What is Elevator Hinge moment? Explain how it varies with angle of attack and elevator deflection. | 07 | | Q.5 | (a) | Contrast Stick free and Stick fixed stability. | 03 | |-----|------------|--|----| | | (b) | What is Neutral Point? Explain in detail. | 04 | | | (c) | With neat sketch explain necessary criteria for longitudinal static stability. | 07 | | | | OR | | | Q.5 | (a) | With neat sketch list down criteria for Lateral stability. | 03 | | | (b) | Derive an expression to calculate elevator angle to trim the airplane (δ_{trim}). | 04 | | | (c) | Explain the role of elevator in static longitudinal control. | 07 | ******