| Seat No.: | Englment No | |-----------|---------------| | Seal NO.: | Enrolment No. | ## GUJARAT TECHNOLOGICAL UNIVERSITY | Suhi | ioct | BE - SEMESTER-V (NEW) EXAMINATION – WINTER 2022
Code:3150102 Date:09-0 | 1_2023 | |------------|------------|--|--------| | • | | Name:Fundamentals of Turbomachines | 1-2023 | | • | • | :30 AM TO 01:00 PM Total Ma | rks•70 | | Instru | | | 113.70 | | | 1. | Attempt all questions. | | | | 2. | Make suitable assumptions wherever necessary. | | | | 3.
4. | Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed. | | | | т. | Simple and non-programmable scientific calculators are anowed. | MARKS | | Q.1 | (a) | Differentiate between an impulse turbine and reaction turbine. | 03 | | V.1 | (b) | • | 04 | | | () | example of each. | | | | (c) | Draw and explain, h-s diagram of an axial turbine stage. | 07 | | | (C) | Draw and explain, it is diagram of an axial taroline stage. | 07 | | Q.2 | (a) | Differentiate between pump, blower and compressor. | 03 | | | (b) | For an axial turbine Prove that, $Cy_2 + Cy_3 = Wy_2 + Wy_3$ | 04 | | | (c) | Draw and explain velocity triangle for a two stage velocity compounded | 07 | | | | turbine with maximum utilization factor. | | | | (a) | OR | 07 | | | (c) | Define and write the expressions of: rotor loss coefficient, nozzle loss coefficient, flow coefficient and stage loading coefficient. | U7 | | | | coefficient, now coefficient and stage roading coefficient. | | | Q.3 | (a) | Explain surging in an axial compressor stage. | 03 | | | (b) | Define Axial compressor. Draw and explain pressure & velocity | 04 | | | | variation through a compressor stage. | | | | (c) | A 10 stage axial flow compressor provides an overall pressure ratio of | 07 | | | | 5:1 with an overall isentropic efficiency of 87%. When the temperature of air at inlet is 15°C. The work is equally divided between the stages. | | | | | A 50% reaction is used with a blade speed of 210 m/s and a constant | | | | | axial velocity of 170 m/s. Estimate the blade angles. Assume a work | | | | | done factor of 1. | | | | | OR | | | Q.3 | (a) | Explain the need of gas turbine blade cooling. | 03 | | | (b) | • • | 04 | | | (c) | With the help of diagram, explain the various components of | 07 | | | | centrifugal compressor. | | | Q.4 | (a) | Explain briefly the flow properties change in the reaction turbine stage. | 03 | | • | (b) | | 04 | | | (c) | In a single-stage impulse turbine the nozzle discharges the fluid on to | 07 | | | | the blades at an angle of 65° to the axial direction and the fluid leaves | | | | | the blades with an absolute velocity of 300 m/s at an angle of 30° to the | | | | | axial direction. If the blades have equal inlet and outlet angles and there is no axial thrust, astimate the blade angle, never produced per kg/s of | | | | | is no axial thrust, estimate the blade angle, power produced per kg/s of the fluid and the blade efficiency. | | | | | OR | | | Q.4 | (a) | | 03 | | | | with the change in blade angles. | | | | (b) | Explain the importance of volute casing in a compressor stage. | 04 | | (c) | Draw velocity triangle for an outward flow radial turbine stage. | 07 | |------------|--|---| | (a) | Discuss the types of impellers used in a centrifugal compressor. | 03 | | (b) | What is slip factor? What is its effect on flow and pressure ratio in | 04 | | | the stage? Derive the Stodola's relation for slip factor | | | (c) | A centrifugal compressor under test gave the following data: | 07 | | | Speed: 11,500 rev/min | | | | Inlet total head temperature : 21°C | | | | Outlet and inlet total head pressure: 4 bar, 1 bar | | | | Impeller dia: 75 cm | | | | If the slip factor is 0.92, what is the compressor efficiency? | | | | OR | | | (a) | Define equilibrium running point and equilibrium running line? | 03 | | (b) | Explain the procedure to find equilibrium running point for on | 04 | | | performance charts of compressor and turbine. | | | (c) | Define degree of reaction. Derive the important relations/ conditions for an impulse stage based on value of degree of reaction. | 07 | | | (a)
(b)
(c)
(a)
(b) | (a) Discuss the types of impellers used in a centrifugal compressor. (b) What is slip factor? What is its effect on flow and pressure ratio in the stage? Derive the Stodola's relation for slip factor (c) A centrifugal compressor under test gave the following data: Speed: 11,500 rev/min Inlet total head temperature: 21°C Outlet and inlet total head pressure: 4 bar, 1 bar Impeller dia: 75 cm If the slip factor is 0.92, what is the compressor efficiency? OR (a) Define equilibrium running point and equilibrium running line? (b) Explain the procedure to find equilibrium running point for on performance charts of compressor and turbine. (c) Define degree of reaction. Derive the important relations/ conditions for | ******