

GUJARAT TECHNOLOGICAL UNIVERSITY**BE- SEMESTER-VI EXAMINATION – WINTER 2025****Subject Code:3160618****Date:25-11-2025****Subject Name:Open Channel flow****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		MARKS
Q.1	(a) What are the different types of channels? (b) Explain the velocity distribution in open channel flow. (c) Explain continuity and momentum equation for open channel flow.	03 04 07
Q.2	(a) What is specific energy? Draw curve of it. (b) Define: 1. Section modulus, 2. Alternate depths, 3. Sequent depths, 4. Flumes (c) Derive differential equation of gradually varied flow with assumptions.	03 04 07
	OR	
Q.3	(c) Explain surges in open channel and their types.	07
Q.3	(a) Write on drawdown and back water curves. (b) What is hydraulic jump? Explain applications of it. (c) Explain classification of flow profiles with examples.	03 04 07
	OR	
Q.3	(a) Calculate the critical depth and the corresponding specific energy for a discharge of $5 \text{ m}^3/\text{s}$ in the rectangular channel of width 2.0 m. (b) What is energy dissipation? Define location of hydraulic jump. (c) Explain and derive St. Venant's equation.	03 04 07
Q.4	(a) Define gradually varied and rapidly varied flow. (b) What is unsteady flow? What are the types? (c) In a rectangular channel 3.5 m wide laid at a slope of 0.0036, uniform flow occurs at a depth of 2.0 m. Find how high the hump be raised without causing afflux?	03 04 07
	OR	
Q.4	(a) A concrete lined trapezoidal channel ($n=0.015$) is to have a side slope of 1:1. The bottom slope is 0.0004. Find the bottom width of the channel necessary to carry $100 \text{ m}^3/\text{s}$ of discharge at normal depth of 2.5 m. (b) What do you mean by non-scouring channels? (c) Explain regimes of flow & prediction of regimes.	03 04 07
Q.5	(a) What is Incipient motion? (b) What are the types of bed forms? What is the difference between aggradation and degradation? (c) A circular drainage pipe 0.80 m in diameter conveys a discharge at a depth of 0.30 m. If the pipe laid on the slope of 1 in 900, estimate the discharge. Manning's $n=0.015$.	03 04 07
	OR	
Q.5	(a) Explain in brief Lacey's regime theory. (b) A hydraulic jump takes place in a rectangular channel with sequent depths of 0.25 m and 1.5 m at the beginning and end of the jump respectively. Estimate the i) discharge per unit width of the channel and ii) energy loss. (c) Write in brief about shield's analysis. Write in brief about flow resistance.	03 04 07

Enrolment No./Seat No _____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VI (NEW) EXAMINATION – WINTER 2024

Subject Code:3160618

Date:05-12-2024

Subject Name:Open Channel flow

Time:02:30 PM TO 05:00 PM

Total Marks:70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		Marks
Q.1	(a) Show that for a very wide rectangular channel the hydraulic radius is equal to the depth of flow in the channel. (b) Draw definition sketch to derive the equilibrium equation: $\tau = w RS_0$ for uniform steady flow. (c) Discuss the practical utility and application of hydraulic jump.	03 04 07
Q.2	(a) Draw a definition sketch to show hydraulic grade line and energy line to show the difference between pipe flow and open channel flow. (b) Show that for a rectangular channel the critical depth $y_c = \left(\frac{q^2}{g}\right)^{0.333}$. The terms have usual meaning. (c) Water flows in a rectangular channel 1 meter wide with 0.1 meter depth of flow, average velocity 1.5 meter/s and viscosity 10^{-6} meter square per second, find the state of flow.	03 04 07
	OR	
	(c) For a constant specific energy 2.4 joules per newton calculate the maximum discharge that may occur in a rectangular channel 4 meter wide.	07
Q.3	(a) Explain Froude number as a ratio of flow velocity to celerity so give reasons why ripples do not travel upstream in a supercritical flow. (b) State the assumptions made in the derivation of dynamic equation of gradually varied flow profile. (c) Describe the Shields curve and discuss its salient features.	03 04 07
	OR	
Q.3	(a) For an open channel steady gradually varied flow draw a control volume show the forces acting on this control volume to apply the momentum equation across the two sections. (b) Use Manning's equation to explain the terms normal flow and normal discharge for a uniform flow. (c) Cite the practical situations in which M_1 and M_2 type of profiles occur and explain their characteristics using the dynamic equation of the gradually varied flow.	03 04 07
Q.4	(a) Give the physical interpretation and importance of hydraulic radius.	03

(b) Explain the term section factor for a uniform flow. **04**
(c) In a wide rectangular channel other factors remaining constant if the normal depth is increased by 20% find the increase in discharge using Chezy's equation. **07**

OR

Q.4 **(a)** Explain grain shear stress and form shear stress for a mobile boundary channel. **03**
(b) Explain hydrostatic pressure for channels of large slope and channels of small slope. **04**
(c) Explain in detail channels of the first and the second kind **07**

Q.5 **(a)** Use Chezy's equation to explain conveyance of flow in a uniform steady open channel flow. **03**
(b) Draw hydrostatic pressure diagram for a surface concave upwards and having a normal acceleration " a_n ". **04**
(c) A sewer pipe is proposed to be laid on a slope of 1 in 3000 and is required to carry a discharge of 2 cumec. What size of the pipe should be used if you plan it to flow half full? Take Manning's $n = 0.014$. **07**

OR

Q.5 **(a)** Give the reasons why positive surges have a stable profile and preserved shape while negative surge have an unstable profile. **03**
(b) Draw the definition sketch giving causes of occurrence for (i) positive surge moving upstream and a positive surge moving downstream (ii) negative surge moving upstream and negative surge moving downstream. **04**
(c) Use specific energy diagram to explain the variation of upstream and downstream depth of flow for a rectangular channel due to provision of hump (i) when approaching depth is sub critical (ii) when approaching depth is supercritical **07**

GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER-VI (NEW) EXAMINATION – WINTER 2023

Subject Code:3160618**Date:13-12-2023****Subject Name: Open Channel flow****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

Q.1	(a) Classify the flows in channel.	03
	(b) Derive the expressions for critical depth in channels of circular sections.	04
	(c) Draw definition sketch for energy equation.	07
Q.2	(a) Explain the subcritical flow in channel with sketch.	03
	(b) Obtain the value of first hydraulic exponent (M) for the rectangular and triangular channels.	04
	(c) Show that in triangular channel the froude number corresponding to alternate depth are given by $F_1/F_2 = (4+F_2^2)^{5/2} / (4+F_1^2)^{5/2}$	07

OR

(c) Find the critical depth for a specific energy head of 1.5 m in the following channels:	07
(a) Rectangular channel, $B = 2.0$ m,	
(b) Triangular channel, $B = 1.5$ m	
(c) Trapezoidal channel, $B = 2.0$ m and $m = 1.0$ m	

Q.3	(a) Define (1) Critical depth (2) Section factor (3) Froude Number	03
	(b) Which are the factors affecting on 'n' - Mannings coefficient?	04
	(c) Explain velocity distribution for turbulent flow in channel.	07

OR

Q.3	(a) Explain in detail 'S' type flow profile.	03
	(b) Write short note on 'Transitional Depth'.	04
	(c) What is the role of end condition in the open flow channel?	07
Q.4	(a) Which are the different simple numerical solutions of GVF problem.	03

(b) Describe the classifications of hydraulic jump. **04**

(c) Short note on: Standing wave Flume. **07**

OR

Q.4 **(a)** Explain in brief Lacey's regime theory. **03**

(b) Explain concept of shield's analysis for uniform flow in mobile Boundary channels. **04**

(c) Derive the equation for energy loss in hydraulic jump. **07**

Q.5 **(a)** What are the limitations of Kennedy's theory? **03**

(b) Discuss positive surge and negative surge. **04**

(c) Derive the equation of motion for Gradually Varied Unsteady Flow (GVUF) in a prismatic channel. **07**

OR

Q.5 **(a)** Define spatially varied flow **03**

(b) Describe the characteristics of flow over spillway. **04**

(c) A standard lined trapezoidal canal section is to be designed to convey $100 \text{ m}^3/\text{s}$ of flow. The side slopes are to be 1.5 horizontal: 1 vertical and Manning's $n = 0.016$. The longitudinal slope of the bed is 1 in 5000. If a bed width of 10.0 m is preferred what would be the normal depth? **07**

GUJARAT TECHNOLOGICAL UNIVERSITY**BE - SEMESTER-VI(NEW) EXAMINATION – WINTER 2022****Subject Code:3160618****Date:17-12-2022****Subject Name:Open Channel flow****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

MARKS

Q.1	(a) Explain the term 'Specific energy in fluid flow'. (b) Explain with example the velocity distribution in open channel. (c) Derive the expressions for the critical depth in channels of various geometric shapes.	03 04 07
Q.2	(a) Explain the term 'First Hydraulic Exponent (M)'. (b) Derive the basic equation of continuity for steady and unsteady open channel flow. (c) Write a note on compound channel sections.	03 04 07
	OR	
	(c) Explain incipient motion condition for sediment particles.	07
Q.3	(a) Write a note on Manning's roughness coefficient. (b) Discuss the types of uniform flow computation problems. (c) Explain the concept of shield's analysis for uniform flow.	03 04 07
	OR	
Q.3	(a) Write a note on prediction of flow regimes. (b) Derive the equations of hydraulic mean depth for triangular and trapezoidal channel sections of rigid boundary channels. (c) Explain the concept of equivalent roughness of a channel.	03 04 07
Q.4	(a) Discuss the characteristics of jump in a rectangular channel. (b) Discuss the permissible velocities in rigid boundary channels. (c) Give the classification of flow profiles based on channel category and region of flow.	03 04 07
	OR	
Q.4	(a) What is gradually varied flow? What are the basic assumptions involved in analysis of GVF? (b) Explain the features of type M and type S profiles. (c) Design a concrete lined channel to carry a discharge of 300 cumecs at a slope of 1 in 6500. The side slopes of the channel may be taken as 1.5:1. The value of n for lining material may be taken as 0.013. Assume limiting depth of the channel as 4.0 m.	03 04 07
Q.5	(a) Write a note on location of hydraulic jump. (b) Explain: Undular jump, weak jump, oscillating jump, steady jump. (c) Derive expression for the discharge over circular and trapezoidal sharp-crested weir.	03 04 07
	OR	
Q.5	(a) Enlist various numerical methods for solving St. Venant equation. (b) Explain (1) sluice gate (2) Standing wave flume.	03 04

(c) Derive the equation of motion for GVUF in a prismatic channel.

07