GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) EXAMINATION – SUMMER 2024

Sur	jecτ	Code:3160109 Date:20-05-202	4
Sub	ject	Name: Theory of Vibration	
Tin	ne:10	0:30 AM TO 01:00 PM Total Marks:	70
	ructio		
	1.		
	2.	Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	
			MARKS
Q.1	(a)	What does vibration mean to you? Which are the most likely reasons vibration	03
		occurs?.	
	(b)	Describe the Energy vibration analysis method.	04
	(c)	Define: Natural Frequency, Damped natural frequency, Time period,	07
		Periodic motion, Amplitude, Degree of freedom, Resonance.	
Q.2	(a)	Define: logarithmic decrement, damping ratio and critical damping	03
		coefficient.	
	(b)	Explain different types of Damping.	04
	(c)	Derive the equation for calculating the natural frequency of a simple	07
		pendulum.	
		OR	
	(c)	Find the solution to the equation of motion for forced vibration in a spring	07
		mass damper system under the effect of harmonic force.	
Q.3	(a)	Write a short note on Vibration Isolation.	03
	(b)	Explain with neat sketch measurement of natural frequency of given system	04
		using Frham's single reed tachometer.	
	(c)	With neat sketch explain working of Vibration measuring instruments.	07
		OR	
Q.3	(a)	What is Resonance? How can this be avoided?	03
	(b)	Explain the behaviour of overdamped, underdamped, and critically damped	04
		systems using a clean sketch.	
	(c)	An electric motor is supported on a spring and a dashpot. The spring has the	07
		stiffness 6400 N/m and the dashpot offers resistance of 500 N at 4.0 m/sec.	
		The unbalanced mass 0.5 kg rotates at 5 cm radius and the total mass of	
		vibratory system is 20 kg. The motor runs at 400 rpm. Determine a) damping	
		factor (b) amplitude of vibration and phase angle (c) resonant speed and	
		resonant amplitude, and (d) forces exerted by the spring and dashpot on the	
		motor.	
			0.5
Q.4	(a)	Define Degree of Freedom. Give one example of single degree, two degrees	03
	(1)	and multi degree of freedom systems	0.4
	(b)	With neat sketch explain the working of Vibration absorber	04
	(c)	Explain Rayleigh's method for finding natural frequency of transverse	07
		vibration of beams.	
0.4	(.)	OR	0.2
Q.4	(a)	Explain Continuous systems.	03
	(b)	Derive an expression for natural frequency for undamped single degree of	04
		freedom spring mass system	

diameter?

Q.5 (a) Differentiate between Steady state and Transient vibration 03 What's the difference between single and double degrees of freedom? 04 **(b)** Derive solution for Spring mass damper system with harmonic force. **07** (c) **Q.5** (a) Explain Critical speed or Whirling speed of shaft. 03 Classify different types of vibration. 04 **(b)** Derive the expression for the length of torsionally equivalent shaft. **07** ******