Seat No.:	E 1 4 NI -
Sear NO:	Enrolment No.
scat 110	Linding 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) EXAMINATION - SUMMER 2022

Subject Code:3160109 Subject Name:Theory of Vibration Time:10:30 AM TO 01:00 PM Instructions: Date:06/0 Total Ma		06/2022	
		rks: 70	
	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	Monk
Q.1	(a) (b) (c)	Explain the Energy method for vibration analysis.	Marks 03 04 07
Q.2	(a)	Define: logarithmic decrement, damping ratio and critical damping coefficient.	03
	(b)		04
	(c)	Find the natural frequency of the system shown in Figure 1. OR	07
	(c)	Derive the equation to calculate natural frequency of Simple pendulum.	07
Q.3	(a) (b)		03 04
	(c)		07
Q.3	(a) (b) (c)	What is Resonance? How it can be avoided?	03 04 07
Q.4	(a) (b)	 Fundamental mode of vibration Principal mode of vibration Normal mode of vibration 	03
	(c)	Derive an expression for frequency & time period of torsional vibration	07
		of two rotor systems. OR	
Q.4	(a)	Define: Multi degree of freedom system. Name the various methods used to analyze these systems.	03
	(b) (c)		04 07

Q.5	(a)	Write a note on Co-ordinate Coupling.	
	(b)	Explain Continuous systems.	04
	(c)	Explain Rayleigh's method for finding natural frequency of transverse	07
		vibration of beams.	
		OR	
Q.5	(a)	Differentiate between Steady state and Transient vibration	03
	(b)	Define Degree of Freedom. Give one example of single degree, two	04
		degree and multi degree of freedom systems.	
	(c)	Derive the expression for the length of torsionally equivalent shaft.	07

Figure 1
