Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER-VI (NEW) EXAMINATION - WINTER 202	23	
Sub	ject	Code:3160113 Date:11-	Date:11-12-2023	
Sub	iect	Name:Advance Aerodynamics		
	•	2:30 PM TO 05:00 PM Total Ma	rks:70	
	uction			
	1.	Attempt all questions.		
	2.	Make suitable assumptions wherever necessary.		
		Figures to the right indicate full marks.		
	4.	Simple and non-programmable scientific calculators are allowed.		
			MARKS	
Q.1	(a)	1. For which of these Mach numbers is flow considered to be hypersonic? a) $M < 1$ b) $M = 1$ c) $M > 5$ d) $1 < M < 5$	03	
		 2. How is the shock layer in case of hypersonic flow? a) Thin b) Thick c) Nonexistent d) Increases with increasing Mach number 		
		3. In hypersonic flow, the shock waves often merge with the viscous boundary layer. a) True b) False		
	(b)	Define Aerothermodynamics.	04	
	(c)	Explain flow over a flat plate for hypersonic case.	07	
Q.2	(a)	What is viscous dissipation?	03	
	(b)	How does viscous dissipation affect temperature inside the boundary layer? Explain in short.	04	
	(c)	Justify statement "Hypersonic boundary layers grow more rapidly compared to subsonic and supersonic boundary layers".	07	
	(c)	OR What is viscous interaction? Explain in brief	07	
Q.3	(a)	Define Hypersonic flow.	03	

OR

(b) Write a note on entropy layer with sketch.(c) Explain Tangent cone method with sketch.

(b) Explain compressible flow and incompressible flow.

(c) Explain Prandtl-Glauert Compressibility correction.

(a) What is Fanno flow?

Q.3

04 07

03

04

07

Q.4	(a)	What is Rayleigh flow?	03
	(b)	Derive linearized velocity potential equation.	04
	(c)	Explain supersonic flow over a cone with sketch.	07
		OR	
Q.4	(a)	How hypersonic flows differ to subsonic flow? Explain	03
	(b)	What is the difference between Modified Newtonian flow and	04
		Newtonian flow?	
	(c)	Draw "Recapitulation" for hypersonic case.	07
Q.5	(a)	Define sound barrier.	03
	(b)	Define Aerodynamic heating.	04
	(c)	Derive an equation on "Hypersonic shock relation in terms of	07
		hypersonic similarity parameters".	
		OR	
Q.5	(a)	Importance of Shock expansion theory in hypersonic flow.	03
	(b)	Write a note on Supersonic airfoil drag.	04
	(c)	Derive the equation of linearized supersonic flow over an airfoil. ***********************************	07