GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) EXAMINATION - SUMMER 2024

Subject Code:3160113 Date:22-05-2024

Subject Name: Advance Aerodynamics

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

7.	Simple	and non-programmable scientific calculators are anowed.	Marks
Q.1	(a)	Explain aerodynamic heating for hypersonic flow.	03
	(b)	Draw and explain entropy layer for airfoil in hypersonic flow.	04
	(c)	Prove $L/D = Cot\alpha$	07
Q.2	(a)	Explain Area Rule with diagram	03
	(b)	What is the difference between Tangent wedge and Tangent cone method for curved surfaces? Define shock layer and viscous retraction	04
	(c)	What is Newtonian theory? Or Prove Cp=2sin²θ for Newtonian theory	07
		OR	
	(c)	Explain with neat sketch High temperature Flows.	07
Q.3	(a)	From equation of Newtonian flow obtain value of L/D for flat plate	03
	(b)	Define shock layer and viscous retraction	04
	(c)	Explain Drag Divergence Mach number- Sound Barrier with Diagram	07
		OR	
Q.3	(a)	What is critical mach number?	03
	(b)	Differentiate subsonic, supersonic and transonic range of flows.	04
	(c)	Derive Linearised velocity potential equation	07
Q.4	(a)	Enlist Application of supersonic airfoil	03
Ų. T	(b)	Explain Centrifugal force corrections to Newtonian theory with neat sketch.	04
	(c)	Derive co-efficient of pressure for hypersonic Prandtl Mayer flow in terms of hypersonic similarity parameter. OR	07
Q.4	(a)	Enlist the applications of hypersonic flow	03
	(b)	Explain Tangent wedge/ Tangent cone method for curved surfaces.	04
	(c)	Explain hypersonic expansion wave relations	07
0.5	(a)	Explain flow over an airfoil case for hypersonic case	03

	(b)	Write a short note on low density flows associated with hypersonic flow	04
	(c)	Define with neat sketch physical effects characteristics of hypersonic flow	07
		OR	
Q.5	(a)	Explain flow over an airfoil case for hypersonic case	03
	(b)	Draw and explain entropy layer for airfoil in hypersonic flow	04
	(c)	To explain $\theta - \beta - M$ diagram and prove β =1.20 for hypersonic flow	07
