Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) EXAMINATION - SUMMER 2022

Subject Code:3160113 Date:08/06/2022

Subject Name: Advance Aerodynamics

Time:10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			Marks
Q.1	(a)	Explain First law of thermodynamics.	03
	(b)	What is Hyper Sonic Flow? Explain.	04
	(c)	Write a note on Supersonic Flow.	07
Q.2	(a)	Why it is important to study Hypersonic Aerodynamics?	03
	(b)	Define Critical mach number. How it is affected by airfoil thickness?	04
	(c)	Write a note on Drag Divergence Mach number. OR	07
	(c)	Derive Hypersonic shock relations in terms of hypersonic similarity parameters.	07
Q.3	(a)	State applications of Hypersonic Flows.	03
	(b)	Write a note on Entropy layer.	04
	(c)	What is Mach number independence? Explain in detail. OR	07
Q.3	(a)	Explain the term Aerothermodynamics.	03
	(b)	Explain Prandtl Glauert rule.	04
	(c)	Derive Prandtl-Mayer expansion wave relations.	07
Q.4	(a)	Write a note on Newtonian Flow.	03
	(b)	With neat sketch explain Super Critical Airfoil.	04
	(c)	Derive basic Hypersonic shock relations.	07
0.4	(a)	OR Define Entropy Adiabatic Process Jacotropic Process	03
Q.4	(a) (b)	Define Entropy, Adiabatic Process, Isentropic Process. Explain Supersonic flow over a flat plate.	03
	(c)	Derive linearized Velocity potential equation for 2-D	07
	(C)	irrotational, isentropic flow over an airfoil.	07
Q.5	(a)	Explain linearized Supersonic flow over an airfoil.	03
_	(b)	Derive an expression for Linearized supersonic pressure	04
		coefficient.	
	(c)	With neat sketch explain Area Rule.	07
0.5		OR	03
Q.5	(a)	State and explain modified Newtonian law.	03
	(b)	Explain Tangent-Wedge method.	04
	(c)	Explain Newtonian sine-squared law.	07
