GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) EXAMINATION - SUMMER 2024

Subject Code:3160104	Date:17-05-2024
----------------------	-----------------

Subject Name:Basic control theor	Sī	ıbiect	Name:	Basic	control	theory
----------------------------------	----	--------	-------	-------	---------	--------

Time:10:30 AM TO 01:00 PM	Total Marks:70
---------------------------	----------------

Instructions:

1.	Attempt	all q	uestions.
	TICCCITIFC		CC C C C C C C C C C C C C C C C C C C

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a)	Differentiate between natural and man-made control systems.	03
	(b)	List the advantages of using a closed-loop control system over an open-loop control	04
		system.	
	(c)	What is SISO,SIMO,MISO and MIMO system in detail?	07
Q.2	(a)	What is mathematical modeling?	03
~ ·-	(b)	Differentiate between linear and non-linear mathematical models.	04
	(c)	Determine the transfer function of the system using Mason's Gain Formula. OR	07
	(c)	Define Transfer Function. Derive the transfer function of an RLC circuit.	07
Q.3	(a)	What is a block diagram in control systems, and what information does it convey.	03
	(b)	List the advantages of using signal flow graphs for analyzing control systems compared to block diagrams.	04
	(c)	Explain steady state error for Type-0, 1 and 2 systems. OR	07
Q.3	(a)	Differentiate between transient and steady-state response in control systems.	03
•	(b)	Explain the time response analysis of control systems and its importance in control	04
		system design.	
	(c)	Explain rules for construction of root locus.	07
Q.4	(a)	Discuss Nyquist criteria for stability.	03
	(b)	Differentiate between absolute and relative stability.	04
	(c)	Explain steps for designing the Bode plot.	07
Q.4	(a)	OR What is state space analysis, and how does it differ from the transfer function approach	03
Q.4	(a)	in control systems?	03
	(b)	Give one example of a rule used for constructing the root locus of a feedback system.	04
	(c)	Derive the Routh-Hurwitz criterion and explain its application in determining the stability of a control system.	07
Q.5	(a)	Explain ON-OFF controller with dead zone.	03
	(b)	List the key elements of a state-space model, including state variables, state equations, and output equation.	04
	(c)	Explain phase lag compensator in detail.	07

OR

Q.5	(a)	Define: (i) State (ii) State Variable (iii) State Vector	03
	(b)	Define the terms proportional band, integral gain, and derivative gain in the context of	04
		PID control.	
	(c)	Define the term "composite controller" and differentiate between discontinuous and continuous controllers.	07
		بې ب	
