

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VI EXAMINATION – WINTER 2025

Subject Code:3161003

Date:02-12-2025

Subject Name:Antennas and Propagation

Time:02:30 PM TO 05:00 PM

Total Marks:70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		Marks
Q.1	(a) Derive the mathematical expression for the radiation intensity of an isotropic radiator.	03
	(b) Enlist different types of antenna based on radiation pattern.	04
	(c) Derive the mathematical expression between maximum effective aperture and directivity.	07
Q.2	(a) Define: 1. Antenna Radiation Efficiency. 2. Radiation Resistance of Antenna. 3. HPBW of Antenna.	03
	(b) Show that the directivity of an infinitesimal dipole is 1.76dB.	04
	(c) Derive the far field components of a half-wave dipole antenna.	07

OR

Q.3	(a) Derive the far field components of a monopole antenna.	07
	(b) Explain antenna field zones with necessary figures.	03
	(b) Explain the concept of pattern multiplication.	04
	(c) Sketch the helical geometry with its associated dimensions showing relationship between circumference, spacing, turn length and pitch angle of helix. Explain the axial mode of helical antenna.	07

OR

Q.3	(a) Differentiate broadside array and endfire array.	03
	(b) Explain 3-element Yagi-Uda antenna.	04
	(c) Derive the field components of a small loop antenna.	07
Q.4	(a) Briefly explain folded dipole antenna.	03
	(b) Explain Babinet's principle.	04

(c) Write short note on log periodic antenna with necessary figure. **07**

OR

Q.4 **(a)** Explain any one antenna phase measurement method. **03**

(b) Briefly explain UWB antenna. **04**

(c) Enlist antenna gain methods and explain any two in detail. **07**

Q.5 **(a)** Enlist different modes of propagation. **03**

(b) Briefly explain different types of lens antenna. **04**

(c) Write short note on microstrip patch antenna. **07**

OR

Q.5 **(a)** In context of radio wave propagation define: **03**

1. MUF.
2. Skip Distance.
3. Virtual Height.

(b) Explain multi-hop propagation. **04**

(c) Write short note on parabolic reflector antenna. **07**

GUJARAT TECHNOLOGICAL UNIVERSITY**BE- SEMESTER-VI (NEW) EXAMINATION – WINTER 2024****Subject Code:3161003****Date:20-11-2024****Subject Name:Antennas and Propagation****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		Marks
Q.1	(a) State and prove reciprocity theorem to antennas.	03
	(b) Compare antenna with transmission line with necessary figure and equations.	04
	(c) Define the following terms with necessary figures and equations if any. <ul style="list-style-type: none"> i) Antenna efficiency ii) Maximum Usable Frequency iii) Beam area iv) Resolution v) Circular Polarization 	07
Q.2	(a) Explain the term “Antenna” in different ways.	03
	(b) Is it possible to design lossless antenna? Justify your answer.	04
	(c) Derive the expression for the far field pattern of an array of 2 – isotropic point sources i) Equal amplitude and phase ii) Equal amplitude and opposite phase.	07
OR		
	(c) Derive an expression for electric and magnetic components of a short dipole antenna if the spherical system is defined in r , θ and ϕ .	07
Q.3	(a) What do you mean by retarded effect? Explain it with help of necessary figure and equations.	03
	(b) Sketch the helical geometry with its associated dimensions showing relationship between circumference, spacing, turn length and pitch angle of helix.	04
	(c) Explain the operation of Microstrip patch antenna with neat diagram.	07

OR

Q.3	(a) When can an antenna be termed as Frequency independent?	03
	(b) Explain Schelkunoff theorems and its usefulness.	04
	(c) Explain the experimental setup for the measurement of radiation pattern of antenna under test.	07

Q.4 (a) Derive Friis transmission formula to determine loss between the two antennas located in free space. **03**
 (b) Discuss significance of complementary antenna with the help of babinet's principal. **04**
 (c) Explain - Pattern Multiplication and show that it can be used to find the resultant pattern of a linear array **07**

OR

Q.4 (a) Explain the features of Yagi Uda antenna. **03**
 (b) Explain the working of Artificial dielectric Lens antenna. **04**
 (c) Give the geometry and discuss the performance of a Log periodic antenna. Derive the associated design equations **07**

Q.5 (a) Explain in brief about antenna for mobile communication. **03**
 (b) Define the following terms. (Draw necessary figures) **04**
 (i) Super refraction (ii) Virtual height
 (c) Enlist and explain the Different modes of Radio wave propagation. **07**

OR

Q.5 (a) Discuss the antenna field zone with neat and clean figure. **03**
 (b) Compare the far field equations of small loop with short dipole. **04**
 (c) Discuss the principle of working of Parabolic reflectors. Explain the various feed techniques, their relative merits and demerits **07**

GUJARAT TECHNOLOGICAL UNIVERSITY**BE - SEMESTER-VI (NEW) EXAMINATION – WINTER 2023****Subject Code:3161003****Date:02-12-2023****Subject Name:Antennas and Propagation****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		MARKS
Q.1	(a) Define (1) FNBW (2) HPBW (3) Gain of antenna (b) Describe briefly polarization and its types. (c) Demonstrate the Radio communication link between transmitting and receiving antenna using Friss Transmission formula.	03 04 07
Q.2	(a) Define antenna and list down various types of antennas. (b) Show that directivity is inversely proportional to beam area. (c) Derive the expression of E_θ and H_θ of a small current element.	03 04 07
OR		
	(c) Derive the expression of radiation resistance of a $\lambda/2$ dipole antenna	07
Q.3	(a) Answer the following: (1) What is the value of directivity, if beam area is $2\pi/3$? (2) Sketch the radiation pattern with necessary indications (b) Explain the helical geometry of helical antenna with necessary diagram. (c) Explain antenna field zones, antenna aperture and radiation resistance of an antenna.	03 04 07
OR		
Q.3	(a) Describe the constructional features of 3 - element Yagi - Uda antenna. (b) Describe the principle of pattern multiplication in the working of Array antennas (c) Explain Binomial Array in detail. Also give its advantages and disadvantages.	03 04 07
Q.4	(a) Give the classification of lens antenna in brief. (b) Explain Babinet's Principle for slot antenna. (c) Explain in brief radiation mechanism for microstrip patch antenna. Give advantages, disadvantages and applications of microstrip patch antenna.	03 04 07
OR		
Q.4	(a) Define UWB. Explain it in brief (b) Describe in brief the working principle of reflector antenna. (c) Obtain the expression for the far field of circular loop antenna. And also show that directivity of loop antenna is same as dipole antenna	03 04 07
Q.5	(a) Explain any one method of phase measurement. (b) Describe in brief log periodic antenna. (c) Which are the methods used to measure the gain of an antenna? Explain any one method.	03 04 07

OR

Q.5 (a) Define MUF, virtual height and skip distance. **03**
(b) Explain the structure of ionosphere with necessary diagram. **04**
(c) Differentiate ground wave propagation, sky wave propagation and space wave propagation. **07**

GUJARAT TECHNOLOGICAL UNIVERSITY**BE - SEMESTER-VI(NEW) EXAMINATION – WINTER 2022****Subject Code:3161003****Date:13-12-2022****Subject Name:Antennas and Propagation****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed

Q.1 (a) Enlist and define the different types of aperture of an antenna. **03**

(b) Derive the condition, When an antenna is act as radiator. Also discuss its different cases. **04**

(c) Write the statement of pattern multiplication theorem. Explain it in detail by using any example. **07**

Q.2 (a) Classify the antennas according to radiation pattern. **03**

(b) The measured Half Power Beam widths of an antenna in the two orthogonal planes are 30° and 20° . Antenna efficiency is 100%. Calculate the approximate gain of the antenna. **04**

(c) Draw and explain structure of Log periodic antenna. Derive its Mathematical equations for designing purpose. **07**

OR

(c) Starting from retarded current, derive an expressions for electric and magnetic components of a short dipole antenna if the spherical system is defined in r , θ and ϕ **07**

Q.3 (a) What is meant by reciprocity Theorem? **03**

(b) Compare the far field equations of small loop with short dipole. **04**

(c) Describe the various forms of Horn antenna. Obtain the design equations of Horn antenna. **07**

OR

Q.3 (a) Calculate the maximum effective aperture of a microwave antenna which has a directivity of 800. Frequency of operation is 6GHz. **03**

(b) Determine the distance from short dipole operating at 1MHz at which radiation filed is equal to the induction filed **04**

(c) Describe the procedure for the measurement of gain of antenna under test. **07**

Q.4 (a) Draw and explain the working principle of slot antenna. **03**

(b) What is the need for an antenna array? Distinguish: Broadside and End fire array **04**

(c) Discuss the principle of working of Parabolic reflectors. Explain the various feed techniques, their relative merits and demerits. Discuss the role of f/d ratio in the parabolic reflectors. (f -focal length, D - diameter of reflector) **07**

OR

Q.4 (a) Enlist the different types of lens antenna and explain in brief. **03**

(b) Define the following terms:

- i) Pitch angle of helical antenna
- ii) Isotropic point source
- iii) Skip zone

iv) Critical frequency	
(c) Explain and design 4-element yagi-uda antenna	07
Q.5 (a) Explain Super refraction briefly.	03
(b) Discuss Dolph–Tchebysheff distribution for linear arrays.	04
(c) Give the radiation mechanism of Microstrip antenna	07
OR	
Q.5 (a) What is meant by virtual height in radio wave propagation?	03
(b) Describe how helical antenna works in axial and normal mode.	04
(c) Draw the structure of atmosphere and ionosphere and explain in detail the various regions of ionosphere.	07
