GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) EXAMINATION - SUMMER 2024

Subject Code:3160102 Da	te:15-05-2024
-------------------------	---------------

Subject Name:Fundamentals of Jet Propulsion

Time:10:30 AM TO 01:00 PM	Total Marks:70
---------------------------	----------------

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

	4.	Simple and non-programmable scientific calculators are anowed.	MARKS
Q.1	(a)	Explain the jet cycle in brief.	03
	(b)	Differentiate high bypass and low bypass turbofan engine.	04
	(c)	Draw and explain h-s diagram for turbofan engine.	07
Q.2	(a)	Prove that for maximum thrust weight ratio maximum propulsive efficiency obtained is 66.66%.	03
	(b)	Explain the role of water injection method.	04
	(c)	Write a note on Thrust augmentation and bleed burn techniques. OR	07
	(c)	Explain Performance characteristics of turbojet engine with the change in cycle temperature ratio and compressor pressure ratio.	07
Q.3	(a)	Discuss critical, subcritical and supercritical operation of ramjet diffuser.	03
	(b)	Draw P-V and T-S diagram of Brayton cycle with reheating.	04
	(c)	Discuss effect of back pressure in convergent divergent nozzle. OR	07
Q.3	(a)	Define bypass ratio and bypass fraction.	03
	(b)	Explain the subsonic inlets and supersonic inlets.	04
	(c)	Derive Mach area relation for flow through variable area ducts and explain	07
		it's importance in view of jet engine nozzle section.	
Q.4	(a)	Explain the annular and can type combustion chamber with their merits and demerits.	03
	(b)	Explain lean mixture, rich mixture and their effect on performance of complete combustion.	04
	(c)	Explain the concept of turbine blade cooling and methods to achieve the same.	07
		OR	
Q.4	(a)	Suggests the Materials used for combustion chamber.	03
	(b)	Derive the expression for nozzle exit velocity and nozzle coefficient for convergent ducts.	04
	(c)	What is choking? Prove that critical pressure ratio for convergent duct is 0.528.	07
Q.5	(a)	Define internal and external flow from a jet engine. Derive the expression of pressure thrust and jet thrust.	03
	(b)	Write a note on pulsejet engine.	04
	(c)	Discuss simple design calculation of ramjet engine.	07

OR

Q.5	(a)	Derive thrust equation for rocket engine.	03
	(b)	Derive expressions for thermal efficiency, propulsive efficiency, TSFC and	04
		Specific impulse for turbojet engine.	
	(c)	Write a note on liquid propellant rocket engine.	07
