Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

Subi	ect (BE - SEMESTER-VII (NEW) EXAMINATION – WINTER 2023 Code:3170102 Date:19-12	-2023
•		Name: Theory of Heat Transfer	-2023
_		0:30 AM TO 01:00 PM Total Marl	ks:70
Instru			10070
	1.	<u> </u>	
	2.	Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
		Simple and non-programmable scientific calculators are allowed. Tables for properties of air and water are permitted.	
Q.1	(a)	List down the applications of extended surface with example in day-to-day life.	03
	(b)	Explain the different modes of heat transfer in detail.	04
	(c)	Derive equations of temperature distribution and heat dissipation for infinite fin.	07
Q.2	(a)	What do you understand by insulation? Explain critical thickness for cylinder?	03
	(b)	Use of aluminum material as a cooking utensils are not desirable. Evaluate	04
	(c)	A steel pipe 3 cm in diameter has its outer surface at 200° C, is placed in air at 30° C with heat transfer coefficient of 8.5 W/m^2 .K. It is proposed to add insulation (k = 0.07 W/m.K) on its outer surface to reduce the heat loss by 40%. Estimate the thickness of insulation required, if pipe temperature and heat transfer coefficient remain unchanged.	07
		OR	
	(c)		07
Q.3	(a)	What is lumped system analysis? What are the assumptions and when is it applicable?	03
	(b)	**	04
	(c)	<u> </u>	07
Q.3	(a)	(1) Nusselt Number. (2) Grashoff number (3) Reynolds number.	03
	(b)	How does the fluid flow inside the duct differ from fluid flow over the bodies?	04
	(c)	Derive the momentum equation for hydrodynamic boundary in differential form with neat sketch. Write equation for stretching factor? State its significance for solving momentum equation.	07

Q.4	(a)	Differentiate parallel flow and counter flow heat exchanger.	03
	(b)	Write the advantages of the effectiveness-NTU method over the LMTD method.	04
	(c)	With a neat sketch explain Film and dropwise condensation.	07
		OR	
Q.4	(a)	State & explain Lambert's cosine law.	03
	(b)	Explain the following terms in heat exchanger? (1) Effectiveness (2) NTU	04
	(c)	Prove that the effectiveness of parallel flow heat exchanger is given by $\varepsilon = \frac{1-\exp{[-NTU(1+C)]}}{1+C}$	07
Q.5	(a)	What do you mean by fouling factor? State the causes of fouling?	03
	(b)	Making use of Plank's law of distribution, establish the relation for the Wien's displacement law.	04
	(c)	Derive the Stefan-Boltzmann law from the Plank's law of thermal radiation. What is the value of Stefan-Boltzmann constant?	07
		OR	
Q.5	(a)	What do you understand by absorptivity? How can it be improved for an opaque body?	03
	(b)	Define a black body. Give examples of some surfaces which don't appear black but have high value of absorptivity.	04
	(c)	Define boiling? Draw boiling curve which shows all the boiling regimes and explain nucleate boiling regime in brief.	07
