GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - SUMMER 2024

Subject Code:3170102 Date:01-06-2024

Subject Name: Theory of Heat Transfer

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a) (b)	How does heat transfer differ from thermodynamics? What is thermal conductivity? Explain its importance in heat conduction problems.	03 04
	(c)	Derive general heat conduction equation in Cartesian coordinate.	07
Q.2	(a) (b) (c)	What is meant by transient heat conduction? Define fin effectiveness. When the use of fins is not justified. A steam pipe is covered with two layers of insulation, first layer being 3 cm thick and second 5 cm. the pipe is made from steel (k = 58 W/m-K) having ID of 160 mm and OD of 170 mm. The inside and outside film coefficients are 30 and 5.8 W/m²-K, resp. Draw electrical analogy for system and calculate the heat lost per meter of pipe, if the steam temperature is 300°C and air temperature is 50 °C. The thermal	03 04 07
		conductivity of two materials is 0.17 and 0.093 W/m-K, resp.	
	(c)	OR Define critical thickness. Derive an expression of critical radius of insulation for the cylinders.	07
Q.3	(a)	Define Nusselt Number. Explain its significance in convection heat transfer.	03
	(b)	A radiator in a domestic heating system operates at a surface temperature of 69°C. Calculate the heat flux at the surface of the radiator if it behaves as a black body.	04
	(c)	Explain the Reynolds-Colburn analogy for laminar flow over a flat plate.	07
0.3	()	OR	0.2
Q.3	(a)	What do you mean by hydrodynamically developed flow? Differentiate between velocity and thermal boundary layer.	03 04
	(b) (c)	Using dimensional analysis, obtain a general form of equation for free Convective heat transfer.	07
Q.4	(a)	What are Fourier and Biot numbers? Write their significance.	03
	(b)	Define heat exchanger and classify in detail.	04
	(c)	In a food processing plant, a brine solution is heated from -12°C to -65°C in a double pipe parallel flow heat exchanger by water entering at 35°C and leaving at 20.5°C at the rate of 9 kg/min. Determine the heat exchanger area for an overall heat transfer coefficient of 860 W/m ²	07

Q.4	(a)	Explain the following terms with reference to heat exchanger: (i) NTU(ii) Effectiveness.	03
	(b)	Explain correction factor for multi-pass arrangement heat exchanger? Also define fouling factor?	04
	(c)	In a shell and tube heat exchanger, 6 kg/s of oil flow through the shell side. The oil enters at 105 °C and leaves at 40 °C. Water flows in the tubes, entering at 32 °C and leaving at 50 °C. In addition, $Cp_{oil} = 2282$ J/kg.K and $U = 416$ W/m²-K. Determine number of tubes, if outer diameter of tubes is 100 mm, length of each tube is 1.9 m and take correction factor as 0.85.	07
Q.5	(a)	State & explain Kirchoff's identity.	03
	(b)	Define: (i) Absorptivity, (ii) Gray Body, (iii) Total Emissive Power and (iv) Black body	04
	(c)	Define total emissive power (Eb) and intensity of radiation (Ib). Show that, $Eb = \pi \times Ib$.	07
		OR	
Q.5	(a)	Differentiate between dropwise and filmwise condensation.	03
	(b)	Enumerate the factors on which the rate of emission of radiation by a body depends.	04
	(c)	Write a note on Nucleate boiling?	07
