Seat No.:	Englment No
Seal NO.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE – SEMESTER- VII EXAMINATION-SUMMER 2023

Subject Code:	3170102	Date: 19/06/2023
	02.020	, , , , , _ , _ ,

Subject Name: Theory of Heat Transfer

Time: 10:30 AM TO 01:00 PM	Total Marks: 70
----------------------------	-----------------

Instructions:

(c)

1.	Attem	pt all	questions.	
----	-------	--------	------------	--

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

		Simple and non-programmable scientific calculators are allowed.	MARKS
Q.1	(a (l:	Explain the following:	03 04
	(((i) Transmissivity (ii) Emissivity (iii) Opaque body (iv) Total Emissive Power With a neat figure, derive the expression of overall heat transfer coefficient for a sphere.	07
Q.2	(2	Why extended surfaces are needed in heat transfer? What are the characteristics of material of extended surfaces?	03
	(ł	Define the following dimensionless number and write their significance in heat transfer. Prandtl number, Grashoff number, Biot number and Nusselt number.	04
	(0	Derive the expression of heat transfer rate in a transient heat transfer following lumped capacitance method.	07
	((OR A cylindrical plastic pipe (k = 0.5 W/mK) of i.d. 3 cm and o.d. 4 cm carries a fluid of average temperature 100°C and h = 300 W/m ² K. The rate of heat transfer per unit length is 500 W/m. To find: (i) The outside surface temperature of pipe, (ii) the overall heat transfer coefficient based on outside area.	07
Q.3	(a (k		03 04
	(0	power emitted from a surface. A solid copper ball of 100 mm diameter and density = 8954 kg/m³, Cp = 383 J/kgK, k = 386 W/m K is at a uniform temperature of 250°C. It is suddenly immersed in a well-stirred fluid which is maintained at a uniform temperature of 50°C. The heat transfer coefficient between the ball and the fluid is h = 200 W/m² K. Estimate the temperature of the copper ball after a lapse of 5 minutes of immersion	07
		OR	
Q.3	(a (k (d	Discuss the Kirchhoff's law of thermal radiation.	03 04 07
Q.4	(2		03
	(lt	What is critical thickness of insulation on a small diameter wire? Explain its physical significance and derive an expression for the same for cylinder.	04
	(0	Derive the expression of heat exchanger effectiveness for counter flow arrangement.	07
0.4	1-	OR What is best evaluations? Why it is used in best transfer applications?	02
Q.4	(a (t		03 04

State and discuss Lamberts Cosine law of radiation.

07

Q.5	(a)	What is a radiation shield? What are its applications?	03
	(b)	Define following:	04
		1) Radiosity	
		2) Irradiation	
		3) Black Body	
		4) Monochromotic Emissive Power	
	(c)	Derive the expression of temperature distribution in parallel flow heat	07
	` ′	exchangers.	
		OR	
Q.5	(a)	Explain the Wien Displacement Law?	03
	(b)	Define fin efficiency and fin effectiveness.	04
	(c)	Derive the expressions for Nusselt number for forced convection.	07
	` '	•	
