GUJARAT TECHNOLOGICAL UNIVERSITY

Subject Code: 3170109 Date: 22-05-2024			
Subject Name: Advance Computational Fluid Dynamics Time: 02:30 PM TO 05:00 PM Total Marks:7			
Instructions:			II K5.70
	1. A 2. M 3. F	ttempt all questions. Take suitable assumptions wherever necessary. Sigures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	MARKS
Q.1	(a)	What is turbulence modeling in CFD?	03
Q -1	(b)	-	04
	(c)	Explain why turbulence modeling is necessary in CFD simulations.	07
Q.2	(a)	Define CFD.	03
	(b)	Write Types of Solver. Explain any one in short.	04
	(c)	Describe the difference between RANS (Reynolds-Averaged Navier-Stokes) and LES (Large Eddy Simulation) turbulence models. OR	07
	(c)	Apply LES modeling to simulate turbulent flow in a complex geometry or high-Reynolds-number flow.	07
Q.3	(a)	Write a step to solve problem in CFD.	03
	(b)	Explain Explicit method.	04
	(c)	Evaluate the accuracy of a CFD solution using a turbulence model compared to experimental data or higher-fidelity simulation results. OR	07
Q.3	(a)	Define Inlet Boundary Condition.	03
	(b)	·	04
	(c)	Design a CFD simulation setup to investigate the effectiveness of different turbulence models in predicting flow separation over an airfoil.	07
Q.4	(a)	Define Outlet Boundary Condition	03
	(b)	Explain Multi block structured grid.	04

Shortly explain κ - ϵ model. 04 **(b)** Write a note on constant pressure boundary condition, symmetry **07 (c)** boundary condition How Does CFD code Work? **Q.5** (a) 03 **(b)** Explain mixing length model. 04 Explain Reynold stress equation models. **07** (c) Define symmetry boundary condition. 03 **Q.5** (a)

(c) Explain in brief Delalunay triangulation.

(b) Define periodic boundary condition.

(a) Define SST model.

Q.4

(c) Explain κ - ω model. **07**

07

03

04