Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER-VII (NEW) EXAMINATION – SUMMER 2022	
Subi	ect (Code:3170109 Date:08/0	6/2022
•		Name:Advance Computational Fluid Dynamics	
_		:30 PM TO 05:00 PM Total Mai	rks: 70
Instru			115. 70
	1.	Attempt all questions.	
		Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	MARKS
Ο 1	(a)	Explain three different approaches of fluid dynamics?	03
Q.1	(a) (b)	•	03 04
	(c)		07
Q.2	(c) (a)		
Q. <u>2</u>	(b)	<u>~</u>	03 04
	(c)	1 1 0	07
	(0)	flow?	.
		OR	
	(c)	1	07
		into algebraic equation.	
Q.3	(a)		03
	(b)	<u> </u>	04
	(c)	Explain Delalunay triangulation method for unstructured grid	07
		generation. OR	
Q.3	(a)	_	03
Q.J	(a)	equations.	0.5
	(b)	1	04
	(c)	- · · · · · · · · · · · · · · · · · · ·	07
		generation technique.	
Q.4	(a)	Define: Transition and Turbulent flow.	03
	(b)		04
	(c)	What is Boundary Condition? State its importance in solving fluid flow	07
		problem.	
ΩA	(a)	OR Difference between the Free-slip and Moving wall boundary condition.	03
Q.4	(a) (b)	•	03 04
	(c)		07
Q.5	(a)		03
~	(33)	model.	
	(b)	List out the necessity of turbulence modeling.	04
	(c)	Explain RANS model of turbulent flow.	07
		OR	
Q.5	(a)	<u> •</u>	03
	(b)	<u> </u>	04
	(c)	What is the step wise procedure for solving pressure based CFD problem?	07
