GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII EXAMINATION - SUMMER 2025

Subject Code:3171920 Date:14-05-2025

Subject Name: Finite Element Methods

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- **Q.1** (a) Enlist different types of 1D element with their applications.
- 03

04

07

04

07

- **(b)** Explain the Rayleigh-Ritz method for finding an approximate solution to the engineering problems.
- (c) Classify the different boundary condition & explain it in detail.

Q.2 (a) Why FEA gives an approximate solution.

- 03
- **(b)** Do you understand by discretization? What are the factors to be considered for discrediting the domain?
- **(c)** For the compound section as shown in figure fixed at both ends, estimate reactions at both ends and stresses when a force of 1600 N is applied at the change of cross section. Use penalty approach.

Component	AB	BC
MATERIAL	COPPER	ALUMINIUM
CROSS SECTIONAL AREA	400 mm2	300 mm2
Length	500 mm	400 mm
Young's Modulus (Gpa)	125	80

- **(c)** Derive element stiffness matrix for 1 D bar element & Derive Element Stiffness Matrix for a Spring Element.
- **Q.3** (a) Explain symmetric banded matrices and skyline matrices.

03 04

07

(b) Explain local and global coordinate system for truss element?

(c) A tapered plate made of steel (E=2 * 105 Mpa) is loaded as shown in figure. Model the bar using two linear spar elements and determine the nodal displacements

Q.3 (a) Differentiate between plane stress and plane strain.

03

(b) Explain the properties of stiffness matrices.

04

07

(c) Evaluate the deflection at node 2 for the truss element shown in figure. Take AE/L value as 1000 N/mm.

Q.4 (a) Differentiate between CST and LST.

03 04

- **(b)** A constant stain triangular element is defined by three nodes 1(1.5,2), 2(7,3.5) and 3(4,7). Evaluate the shape functions N1,N2, and N3 at the interior point P (3.85,4.8).
- **(c)** Illustrate the Plane Frames element with neat sketch indicating degree of freedoms. How it is differed from beam element. Write element stiffness matrix K transformation matrix L and load vector F.

OR

Q.4 (a) Enlist three examples of practical application of axisymmetric element.

03

04

07

(b) What are the conditions necessary to be followed for considering a problem as axisymmetric?

(c) Determine the global stiffness matrix and global load vector in the truss shown in figure. The cross-sectional area of each member is 200 mm² and modulus of elasticity is 200 GPa. Assume $\alpha = 12 * 10-6$ per °C.

03

(b) How are the thermal effects considered in the analysis of 1 d linear elements?

04 d **07**

(c) Consider the bar as shown in figure. Determine the global stiffness matrix and global load vector, if the temperature rises by 60°C. Assume modulus of elasticity for the complete bar as 200 GPa and coefficient of thermal expansion as 12 * 10-6 per °C.

- **Q.5** (a) What are the ways through which 3D problems can be reduced to a 2D approach?
 - (b) Define Isoparametric element. 04
 - (c) For the indicated beam in figure determine the global stiffness matrix. Take product of young's modulus and moment of inertia as 400*103 N-m2.

