GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-III (NEW) EXAMINATION – WINTER 2024

Subject Code:3130005

Subject Name: Complex Variables and Partial Differential Equations
Time: 10:30 AM TO 01:00 PM
Instructions:

Total Marks:70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

 $(x-a)(y-b)-z^2=x^2+y^2$

(b) Solve: xp + yq = 3z

4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a)	Find the principal argument $Arg(z)$ when $z = \frac{-2}{1+i\sqrt{3}}$.	03
	(b)	Find all the values of following: $(1-i)^{\frac{2}{3}}$.	04
	(c)	Find the bilinear transformation which maps the points $z = 0, -i, -1$ into $w = i, 1, 0$ respectively.	07
Q.2	(a)	Show that $f(z) = z^3$ is analytic everywhere.	03
	(b)	Evaluate $\int (x^2 - iy^2) dz$ along the parabola $y = 2x^2$ from (1,2) to	04
	(c)	(2,8). Find Laurent's series expansion in powers of z that represent	07
		$f(z) = \frac{1}{z^2(1-z)}$ for the following domains: (i) $ z < 1$ (ii) $ z > 1$	
		OR	
	(c)	Find the image of the half-plane $x > c$, when $c > 0$ under the	07
		transformation $w = \frac{1}{z}$. Show the regions graphically.	
Q.3	(a)	If $u+iv$ is analytic, show that $v-iu$ and $-v+iu$ are also analytic.	03
	(b)	Show that $u(x, y) = x^2 - y^2 + x$ is harmonic. Find the	04
		corresponding analytic function $f(z) = u + iv$.	
	(c)	Evaluate $\int_C \frac{\cos \pi z}{z^2 - 1} dz$, where C is the rectangle whose vertices are	07
		$2\pm i$, $-2\pm i$.	
0.3	()	OR	0.2
Q.3	(a)	Obtain the residue of $f(z) = \frac{z-3}{(z+1)(z+2)}$ at it's poles.	03
	(b)	Evaluate $\int_C \frac{e^{2z}}{(z+1)^4} dz$, where C is the circle $ z = 2$.	04
	(c)	Evaluate $\int_{0}^{\infty} \frac{x \sin x}{x^2 + 9} dx$ using residue.	07
Q.4	(a)	Form a partial differential equation for the equation	03

04

(c) Solve by Charpit's Method: $p = (z + qy)^2$ **07** (a) Form a partial differential equation by eliminating the arbitrary **Q.4** 03 function from $z = f(x^2 - y^2)$ Solve x(y-z)p + y(z-x)q = z(x-y)04 Solve $(D^2 - 2DD' + D'^2)z = e^{x+2y} + x^3$ **07** (a) Solve: $p - x^2 = q + y^2$ Q.5 03 **(b)** Solve $(D^2 - 2DD' + D'^2)z = \tan(x + y)$ 04 Solve $(D^2 + DD' - 6D'^2)z = \sin(2x + y)$ **07** (a) Solve: (p-q)(z-px-qy) = 1**Q.5** 03 Solve: $\frac{\partial^3 z}{\partial x^3} - 3 \frac{\partial^3 z}{\partial x^2 \partial y} + 2 \frac{\partial^3 z}{\partial y^3} = 0$ 04 (c) Using the method of separation of variables, solve **07** $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u, \ u(x,0) = 6e^{-3x}$
