Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION - WINTER 2023

Subject Code:3130005 Date:12-01-2024 **Subject Name: Complex Variables and Partial Differential Equations**

Time:10:30 AM TO 01:00 PM **Total Marks:70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- Figures to the right indicate full marks.

	4. \$	Simple and non-programmable scientific calculators are allowed.	
			Marks
Q.1	(a)	Express $\left(\frac{2+i}{3-i}\right)^2$ into Polar form.	03
	(b)	Find and plot the fourth roots of (-1) .	04
	(c)	Solve $(D^2 + DD' + D' - 1)z = \sin(x + 2y)$	07
Q.2	(a)	Determine a and b such that $u = ax^3 + bxy$ is harmonic.	03
	(b)	Discuss the continuity of $f(z)$ at the origin.	04
		$f(z) = \frac{\overline{z}}{z}$, if $z \neq 0$	
		$= \scriptstyle \scriptstyle$	
	(c)	Show that the function $u = e^x cos y$ is harmonic. Find the conjugate function v and express $u + iv$ as an analytic function of z . OR	07
	(c)	Find the bilinear transformation which maps the points $1, -1, \infty$ onto the points $1 + i$, $1 - i$, 1 respectively. Also, find its fixed points.	07
Q.3	(a)	Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{z^n}{z^{n+1}}$.	03
	(1.)	Separate $(\sqrt{i})^{\sqrt{i}}$ into real and imaginary parts.	04
	(b)		07
	(c)	State Cauchy's Integral Theorem and use it to find $\int_{c}^{\infty} \frac{e^{2z}}{z^{2}+1} dz$, where C	07
		is $ z = \frac{1}{2}$.	

- (a) Evaluate $\int_0^{2+i} z^2 dz$ along the line $y = \frac{x}{2}$. **Q.3** 03
 - (b) Expand $f(z) = \cos z$ as a Taylor series about z = 0. 04
 - Write Cauchy's Integral formula and hence evaluate: **07** $\int_{C} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)(z-2)} dz, \text{ where C is } |z| = 3.$
- 03 **Q.4** (a) Classify the singular point z = 0 for function $f(z) = \frac{1}{z^4 - 4z^2}$.
 - (b) Find the complete integral of $p 3x^2 = q^2 y$ 04
 - Obtain the Laurent's series for the function $f(z) = \frac{1}{z(1-z)}$ in the regions : **07** (i) |z + 1| < 1 (ii) 1 < |z + 1| < 2 (iii) |z + 1| > 2

(a) Derive partial differential equation by eliminating a and b from z =03 **Q.4** $(x-a)^2 + (y-b)^2$.

(b) Using Cauchy's residue theorem, evaluate $\int_c \frac{5z-2}{z(z-1)} dz$; |z| = 2. (c) Solve x(y-z)p + y(z-x)q = z(x-y). 04 **07** (a) Evaluate $\int_0^\infty \frac{1}{1+x^2} dx$ using contour integration. Q.5 03 **(b)** Solve $(D^2 - 4DD' + 4D'^2)z = e^{2x+3y}$. 04 Find the solution of the wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ such that $y = a \cos pt$ when x = l, and y = 0 when x = 0. **07** (a) Solve $(2D^2 + 5DD' + 2D'^2)z = 0$. **Q.5** 03 **(b)** Solve p(1+q) = qz. 04 (c) Using the method of separation of variable, find the solution of $\frac{\partial u}{\partial x}$ = **07** $2\frac{\partial u}{\partial t} + u, \ u(x,0) = 6e^{-3x}.$
