GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (NEW) EXAMINATION - SUMMER 2024

Subj Time	ect I e:10:	Code:3130005 Date:16-07 Name: Complex Variables and Partial Differential Equations 30 AM TO 01:00 PM Total Mai	1
Instru	1. 2. 3.	s: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
Q.1	(a)	Represent $\frac{(1+i)^2}{1-i}$ in a+ib or u+iv form and find its modulus and argument	MARKS 03
	(b)	and find the corresponding analytic function $f(z) = u(x, y) + iv(x, y)$	04
	(c)	Find the bilinear transformation which maps the points $z=i,1$, -i onto the points $w=-i,1$, i respectively.	07
Q.2	(a)	Evaluate $\int_0^{4+2i} \bar{z} \ dz$ along the curve $z = t^2 + it$	03
	(b)	Find the centre and radius of convergence of the given power series. $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} (z-3i)^n$	04
	(c)	Define analytic function and If $f(z)$ is analytic and $ f(z) = c$ then show that $f(z)$ is constant	07
	(c)	OR Evaluate $\oint_C \frac{\cos \pi z^2}{(z-1)(z-2)} dz$; C is $ z = 3$	07
Q.3	(a)	Define: Singular point, Isolated singular point, Residue and Explain types of isolated singular points.	03
	(b)	Find the Laurent series of $\frac{7z-2}{(z+1) z (z-2)}$; $1 < z+1 < 3$.	04
	(c)	Evaluate using Cauchy residue theorem $\oint_c \frac{2z+6}{z^2+4} dz$ where C: $ z-i =2$	07
Q.3	(a)	Find the pole and its order of following functions 1. $f(z) = \frac{\sin z}{z^4}$ 2. $f(z) = \frac{1}{(z-5)^3(z^2-4)}$	03
	(b)	Find the residues at singular points of $f(z) = \frac{z^2}{(z-1)^2(z+2)}$	04

- (c) Evaluate following real integration using residue theorem. 07 $\int_{2\pi}^{2\pi} \frac{1}{(2+\cos\theta)^2} d\theta$
- Q.4 (a) Form PDE by eliminating arbitrary Functions $F(x + y + z, x^2 + y^2 z^2) = 0$
 - (b) Solve following Linear Partial Differential Equations 04
 - 1) xp + yq = x y
 - 2) (z y)p + (x z)q = (y x)
 - (c) Solve following Non- linear partial differential equations using Charpit's method px + qy = pq

OR

- Q.4 (a) Find the order of the following PDE (1 to 3). And check whether the equations are linear, quasilinear or nonlinear.
 - 1) $\frac{\partial u}{\partial x} \frac{\partial u}{\partial t} = 0$, 2) $\frac{\partial^2 u}{\partial x^2} e^{2x} \frac{\partial^2 u}{\partial t^2} = u^3$, 3) $u_y u_{yy} + (u_x)^2 = 0$
 - (b) Solve following Non-linear partial differential equations. 04
 - 1) $p^2 q^2 = x y$
 - $2) \quad p(1+q) = qz$
 - (c) Solve following Partial Differential Equations 1) $(x^2 - y^2 - z^2)p + 2xyq = 2xz$
 - $\frac{\partial^2 z}{\partial x^2} 2 \frac{\partial^2 z}{\partial x \partial y} 8 \frac{\partial^2 z}{\partial y^2} = 0$
- Q.5 (a) Classify second order homogeneous partial differential equations as elliptic, parabolic or hyperbolic
 - $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial x \partial y} 12 \frac{\partial^2 z}{\partial y^2} = 0$ $2) \frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial x \partial y} = 0$
 - Using method of separation of variables solve $\frac{\partial u}{\partial t} + u = 2 \frac{\partial u}{\partial x}$ given that $u(x, 0) = 4e^{-3x}$
 - Determine solution of two-dimensional Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ which satisfy the condition u(0, y) = u(l, y) = u(x, 0) and $u(x, b) = \sin \frac{n\pi x}{l}$

OR

- Q.5 (a) Solve partial differential equations by direct integration method $\frac{\partial^2 z}{\partial x^2} = \sin x$
 - (b) Solve second order homogeneous PDEs $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial x \partial y} 12 \frac{\partial^2 z}{\partial y^2} = 3e^{2x 3y}$
 - (c) Find the solution of One- Dimensional Wave Equation. 07
