

Enrollment No./Seat No.:

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering - SEMESTER - 1/2 EXAMINATION - WINTER 2025

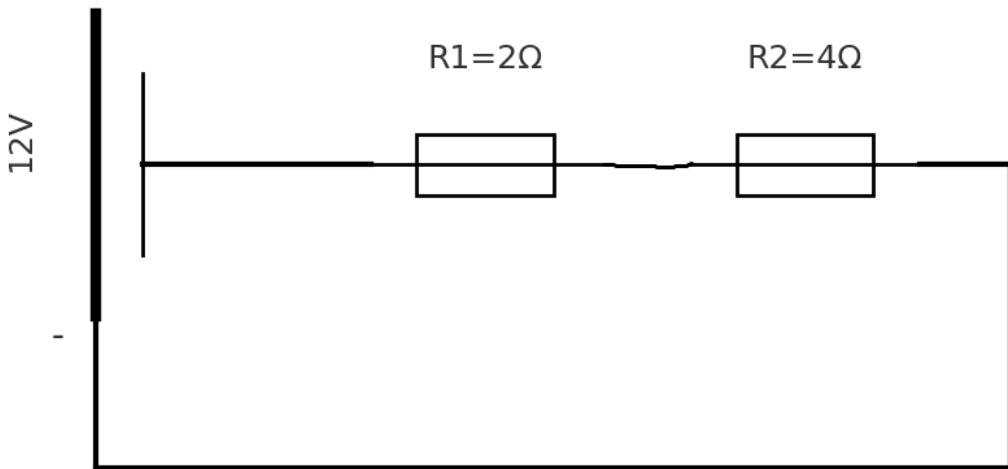
Subject Code: BE01000051/BE01R00051

Date: 24-12-2025

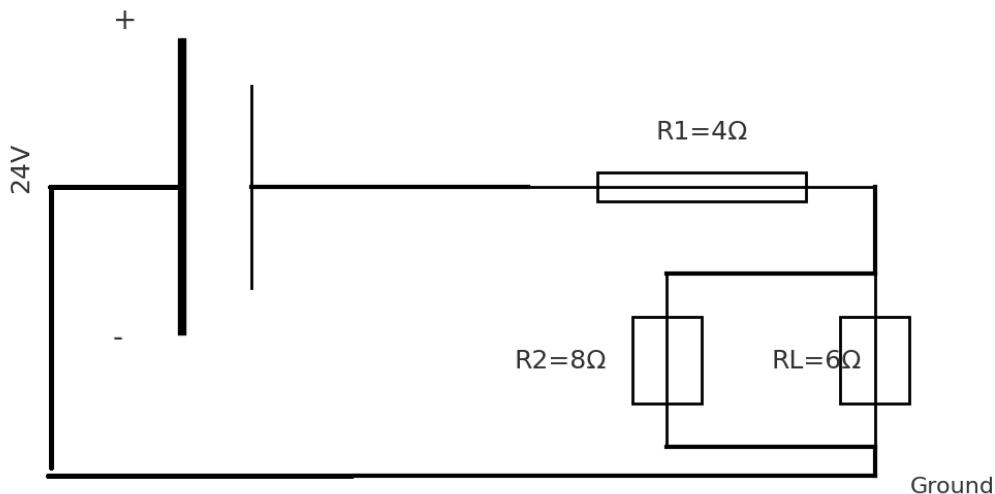
Subject Name: Basic Electrical Engineering

Time: 02:30 PM TO 05:00 PM

Total Marks: 70


Instructions

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.


	Marks
Q.1 (a) Using Kirchhoff's Voltage Law (KVL), calculate the current flowing through a 2Ω resistor in a simple series circuit containing a 12 V battery, a 2Ω resistor, and a 4Ω resistor.	03

+

Q1: Series circuit (12 V, $R1=2\Omega$, $R2=4\Omega$)

(b) For the given circuit, apply Thevenin's Theorem to determine the current flowing through a $6\ \Omega$ load resistor connected across two terminals.
 (Assume: a 24 V source with $4\ \Omega$ and $8\ \Omega$ resistors in series, load of $6\ \Omega$ connected across the $8\ \Omega$ resistor terminals.)

04

(c) A DC circuit consists of three resistors: $R_1 = 10\ \Omega$, $R_2 = 20\ \Omega$, and $R_3 = 30\ \Omega$, connected in a star configuration. Convert this star network into its equivalent delta network, and calculate the resistance values of each branch of the delta.

07

Q.2 (a) Compare the behavior of a pure resistor, a pure inductor, and a pure capacitor when each is connected to a single-phase AC supply.

03

(b) Analyze and explain why the power factor in an inductive load is always lagging, while in a capacitive load it is leading.

04

(c) A three-phase system can be connected in either star (Y) or delta (Δ) configuration. Analyze and discuss the differences between these two connections in terms of:

07

- Line and phase voltages
- Line and phase currents
- Typical applications in electrical systems

OR

(c) Analyze the conditions for series resonance in a single-phase RLC circuit. Discuss how:

07

- Voltage and current behave at resonance,
- Power factor changes at resonance, and
- Two practical applications of resonance in electrical systems.

Q.3 (a) Explain the difference between a magnetic circuit and an electric circuit with one simple example each.

03

(b) Describe the working principle of a single-phase transformer. Why is it called a "static" electrical machine?

04

(c) Explain the construction and working of a single-phase induction motor. Also, list at least three common household applications where this motor is used. **07**

OR

(a) What is hysteresis loss in magnetic materials? Explain why it occurs in transformers. **03**

(b) Describe the term rotating magnetic field. How is it produced in an induction motor? **04**

(c) Explain the working principle of a brushless DC motor (BLDC). Also, mention two advantages of BLDC motors over traditional DC motors. **07**

Q.4 (a) Explain the difference between MCB (Miniature Circuit Breaker) and ELCB (Earth Leakage Circuit Breaker). **03**

(b) Describe the importance of earthing in domestic wiring systems. Mention two common types of earthing. **04**

(c) Explain the general procedure of preparing an electricity bill for a household. Also, discuss how energy consumption of appliances is calculated in kilowatt-hours (kWh). **07**

OR

(a) What are the different types of lamps used in domestic and commercial wiring? Briefly explain any two. **03**

(b) Explain the function of a wattmeter. How is it different from an ammeter and a voltmeter in electrical measurements? **04**

(c) Explain the safety precautions that should be taken while handling household electrical appliances. Support your answer with at least three examples. **07**

Q.5 (a) State the working principle of a voltmeter. **03**

(b) State the characteristics of a battery. **04**

(c) Write short note on Switch Fuse Unit (SFU) **07**

OR

(a) State any three applications of brushless DC (BLDC) motors in daily life. **03**

(b) State different types of batteries and mention one example of each. **04**

(c) Write short note on Earth Leakage Circuit Breaker (ELCB) **07**
