

GUJARAT TECHNOLOGICAL UNIVERSITY**BE- SEMESTER-I & II EXAMINATION – WINTER 2025****Subject Code:3110011****Date:16-01-2026****Subject Name:Physics****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

Marks

Q.1 (a) The critical temperature for lead is 7.1 K. At 6 K the superconducting property disappears if it is subjected to a magnetic field of $4.67 * 10^4$ A/m. Find H_0 . **03**
 (b) Explain properties Meissner Effect and Effect of magnetic field for Superconductors. **04**
 (c) Define superconductivity. Describe its use in Maglev and Josephson Junction. **07**

Q.2 (a) A hall of volume 1000 m^3 is found to have a reverberation time of 2.5 s. If the area of the sound absorbing surface is 5000 cm^2 , calculate the average absorption coefficient. **03**
 (b) What is a wave? Describe Longitudinal and Transverse wave. **04**
 (c) What is simple harmonic motion? Obtain its differential equation with graphical representation. Write equation for its potential energy and kinetic energy in terms of amplitude of a wave. **07**

OR

(c) What is damped harmonic motion. Solving its differential equation, obtain equation for its overdamped and underdamped conditions. **07**

Q.3 (a) Write equation of bending of beam and explain I shaped girders with advantages. **03**
 (b) A rectangular solid has dimensions $6 \times 6 \times 2 \text{ cm}$. A force of 0.2 N, applied tangentially to the upper surface, causes a displacement of 5 mm relative to the lower surface. Calculate the shearing strain, stress and rigidity modulus. **04**
 (c) State types of moduli of elasticity. Derive relation of Young's modulus and modulus of rigidity. **07**

OR

Q.3 (a) Define stress and strain. Give their equation and unit. **03**
 (b) Calculate the Young's modulus in the cantilever depression method used. The length of the cantilever is 1 m which is suspended with a load of 150 gm. The depression is found to be 4 cm. The thickness of the beam is 5 mm and breadth of the beam is 3 cm. **04**
 (c) What is twisting moment? Derive equation for twisting couple on a wire or shaft. **07**

Q.4 (a) What is the ratio of the stimulated emission to spontaneous emission at a temperature of 250°C for the sodium D line? **03**
 (b) Discuss properties of laser. **04**
 (c) Obtain relation between Einstein's coefficients. **07**

OR

Q.4 (a) Write applications of Ultrasonic waves in various fields **03**
(b) List the properties of ultrasound. **04**
(c) Discuss with suitable diagram the piezoelectric method for ultrasonic wave generation. State its advantages and disadvantages. **07**

Q.5 (a) Find the maximum velocity and acceleration of a particle performing SHM of period 20π s and amplitude 10 cm. **03**
(b) Discuss acoustic grating method for finding velocity of ultrasonic waves in medium. **04**
(c) What is destructive and non-destructive testing. Give difference between them. **07**

OR

Q.5 (a) An Ultrasonic source of 0.07 MHz sends down a pulse towards the seabed which returns after 0.35 sec. The velocity of sound in water is 1800 m/s. Calculate the depth of sea and wavelength of pulse. **03**
(b) Write note on applications of laser in engineering and medicine. **04**
(c) Discuss Ruby laser for laser beam production with suitable diagram. **07**
