

Enrollment No./Seat No.:

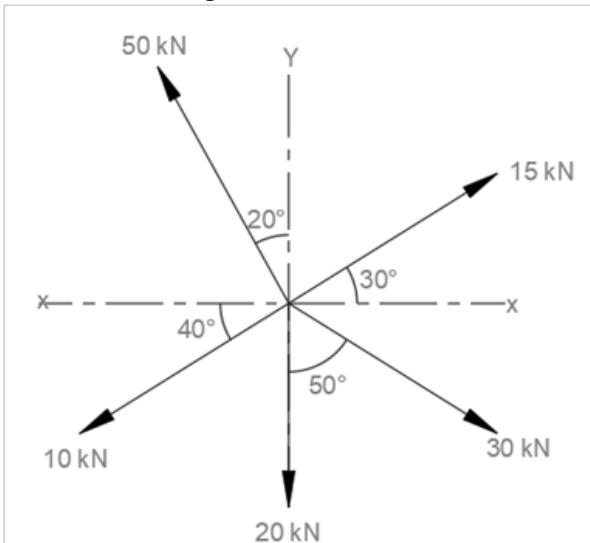
GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering - SEMESTER - 1/2 EXAMINATION - WINTER 2025

Subject Code: BE01000091/BE01R00091

Date: 29-12-2025

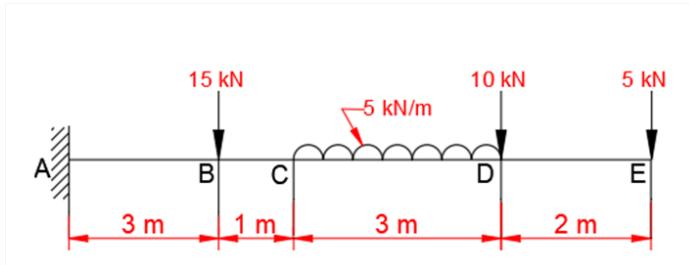
Subject Name: Mechanics of Solids


Time: 02:30 PM TO 05:00 PM

Total Marks: 70

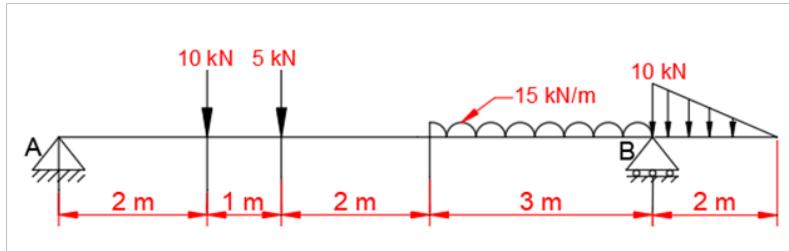
Instructions

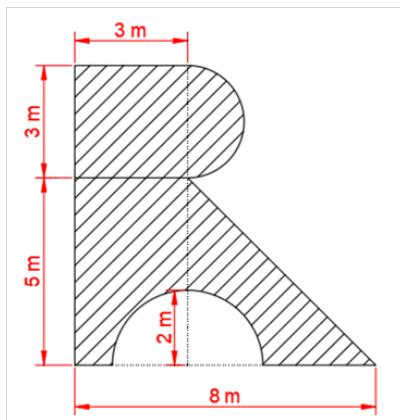
1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.


	Marks
Q.1 (a) Differentiate Statics and Dynamics	03
(b) Explain the terms composition of forces and resolution of forces with an example.	04
(c) Find out the magnitude and direction of resultant of force system shown in figure.	07

Q.2 (a) State the law of polygon of forces with an example.	03
(b) State and explain Lami's theorem with a diagram.	04
(c) A simply supported beam 10 m long carries three-point loads at 150 kN, 100 kN and 120 kN at 2m, 4m and 7m from left support. Draw S.F. and B.M. diagram for the beam.	07

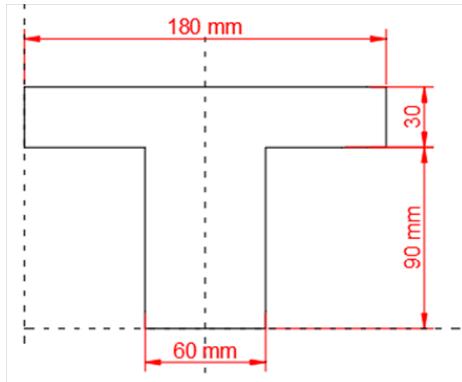
OR


(c) Determine the support reactions for the beam shown in below Figure. Also Calculate and plot the shear force and bending moment diagrams. 07


Q.3 (a) Distinguish between centroid and Center of Gravity. 03
 (b) Classify different types of beams with neat sketches 04
 (c) Derive the Equation of moment of Inertia about an axis passing through the Centroid of the rectangle. 07

OR

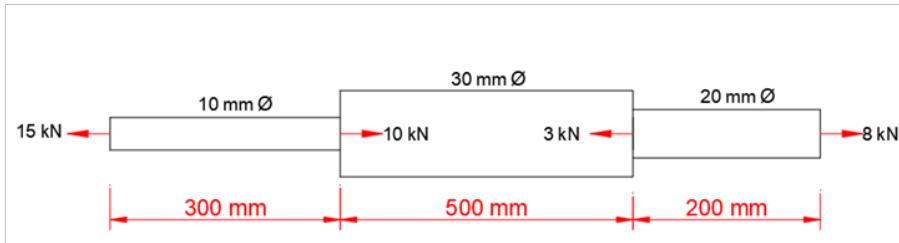
(a) Define stress. Also explain types of stresses. 03
 (b) Determine support reaction for the given beam shown in figure. 04



(c) Determine the centroid of the section shown in Figure below. 07

Q.4 (a) Define Elastic limit and Modulus of Elasticity. 03
 (b) Derive with usual notations the theorem of perpendicular axis. 04

(c) Determine moments of inertia of a section shown in figure below about its horizontal centroidal axis. 07



OR

(a) Write the bending equation and explain each term of that equation. 03

(b) State and prove Pappu's guldinus theorem for surface area of bodies. 04

(c) A steel bar of 1000 mm long is acted upon by forces as shown in figure . Find the elongation of the bar. Take $E = 200$ Gpa. 07

Q.5 (a) Draw shear stress distribution diagram for: i) Triangular (ii) Circular and (iii) T - section 03

(b) Define point of contraflexure. Give an example of where it occurs. 04

(c) A circular pipe of 100 mm external diameter and 80 mm internal diameter is used as a simply supported beam of 4 m span. Find the safe concentrated load that the beam can carry at the mid-point, if the permissible stress on the beam is 120 N/mm^2 07

OR

(a) Define Composite bar and Compound bar. 03

(b) Derive torsion equation with usual notations. 04

(c) A circular rod of diameter 50 mm and 700 mm long is subjected to a tensile force of 40 kN. The modulus of elasticity for steel is 200 kN/mm^2 . Find out the stress,strain and elongation of the bar due to applied load. 07
