

GUJARAT TECHNOLOGICAL UNIVERSITY**BE- SEMESTER-I&II EXAMINATION – SUMMER 2025****Subject Code:BE01000091****Date:09-06-2025****Subject Name:Mechanics of Solids****Time:10:30 AM TO 01:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		Marks
Q.1	(a) Define: (i) Rigid body, (ii) deformable body, (iii) Elastic body.	03
	(b) State and explain parallelogram law of forces.	04
	(c) Find resultant force in magnitude and direction if a particle is acted upon by following forces.	07
	1. 20 N inclined at 30° north of east.	
	2. 25 N towards north	
	3. 30 N towards north-west	
	4. 35 N inclined at 40° to south of west	
	5. 24 N inclined at 30° to east of south.	
Q.2	(a) State and explain Varignon's theorem.	03
	(b) Explain various types of load, beams and their support system.	04
	(c) The beam AB of span 12 m shown in Fig. 1 is hinged at A and is on rollers at B. Determine the reactions at A and B for the loading shown in the Fig.	07

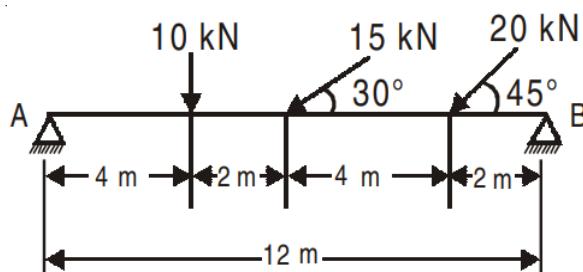


Fig. 1

OR

(c) Draw shear force and bending moment diagram for the cantilever beam shown in Fig. 2

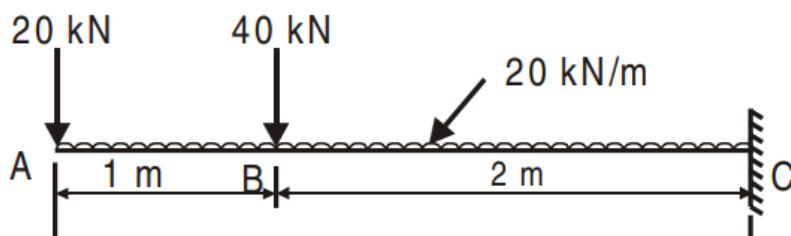


Fig. 2

Q.3 (a) A cantilever of length 2 meters fails when a load of 2 kN is applied at the free end. If the section of the beam is 40 mm × 60 mm, find the stress at the failure. **03**

(b) Derive using first principle the equation for calculation of maximum shear stress at a section for a beam with rectangular cross section. **04**

(c) A wooden beam 100 mm wide and 150 mm deep is simply supported over a span of 4 meters. If the shear force at a section of the beam is 4500 N, find the shear stress at a distance of 25 mm above the neutral axis (N.A.).

OR

Q.3 (a) Define: (i) Bending Moment (ii) Point of Contra-flexure **03**
 (b) Draw shear stress distribution diagram for Rectangular, Circular T section and I section. **04**
 (c) A simply supported wooden beam of span 1.3 m having a cross-section 150 mm wide by 250 mm deep carries a point load W at the center. The permissible stresses are 7 N/mm² in bending and 1 N/mm² in shearing. Calculate the safe load W. **07**

Q.4 (a) Define: (1) Centroid, (2) Center of gravity, (3) Center of mass **03**
 (b) State assumptions made in theory of torsion. **04**
 (c) Find the center of gravity of the I-section shown in Fig.3 **07**

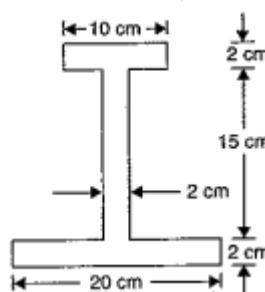


Fig. 3

OR

Q.4 (a) Derive with usual notations the theorem of perpendicular axis. **03**
 (b) Derive torsion equation with usual notations. **04**
 (c) Find the moment of inertia of ISA 100×75×6 about the centroidal XX and YY axes, shown in Fig.4 **07**



Fig. 4

Q.5 (a) Explain Stress-Strain diagram for Ductile Material. **03**
 (b) A rod 150 cm long and of diameter 2.0 cm is subjected to an axial pull of 20 kN. If the modulus of elasticity of the material of the rod is 2×10^5 N/mm², determine:(i) the stress, (ii) the strain, and(iii) the elongation of the rod. **04**
 (c) A metallic bar 300 mm×100 mm×40 mm is subjected to a force of 5kN (tensile), 6kN (tensile), and 4 kN (tensile) along x, y, and z directions, respectively. Determine the change in the volume of the block. Take $E=2 \times 10^5$ N/mm² and Poisson's ratio =0.25 **07**

07

OR

Q.5 (a) Define stress, strain and poisson ratio. **03**
 (b) A short concrete column $450 \text{ mm} \times 450 \text{ mm}$ in section is axially loaded to 500 kN .
 The column is strengthened by four, 16 mm diameter steel bars each one at corner.
 Calculate stresses in concrete and steel. Take $E_c = 14 \text{ GPa}$ and $E_s = 210 \text{ GPa}$. **04**
 (c) A brass bar, having a cross-sectional area of 1000 mm^2 is subjected to axial forces
 as shown in Fig.5. Find the total elongation of the bar.
 Take $E = 1.05 \times 10^5 \text{ N/mm}^2$ **07**

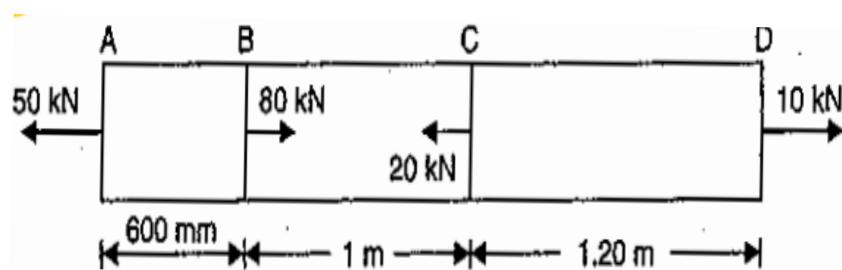


Fig. 5
