Seat No.:	E 1 4 NI -
Sear NO:	Enrolment No.
scat 110	Linoinent 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI(NEW) EXAMINATION - WINTER 2022

Subject Code:3161914	Date:16-12-2022
subject courters 1.	

Subject Name: Renewable Energy Engineering

Time:02:30 PM TO 05:00 PM	Total Marks:70

T .		4 •	
Inst	rmi	rtin	nc.
1112	uu	cuo	112

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.

	3. 4.	Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
			MARKS
Q.1	(a)	Justify the need to explore Renewable energy in the context of the latest energy generation and energy consumption data for India	03
	(b)	Explain the following terms: i) Air mass ii) Solar constant iii) Angle of incidence iv) Hour Angle	04
	(c)	Derive an expression for maximum power, maximum torque, and maximum torque, and maximum axial thrust available from a wind turbine from basic principles	07
Q.2	(a)	Explain the working principle of solar photovoltaic cell	03
	(b)	Calculate the number of daylight hours in New Delhi on 22 December 2021. Take latitude as 28 ⁰ 35' N	04
	(c)	Explain with a neat sketch, the principle, construction, and working of the Pyranometer.	07
		OR	
	(c)	Explain in detail the parameters affecting the performance of solar thermal devices.	07
Q.3	(a)	Define the following terms: i) Tip Speed Ratio ii) Solidity iii) Torque coefficient	03
	(b)		04
	(c)	drum biogas plants	07
		OR	
Q.3	(a)	Calculate the ideal power developed by a wind turbine with a rotor diameter of 25 m and velocity of 4 m/s. Find the ideal power if velocity is doubled. Comment on the result.	03
	(b)		04
	(c)		07
Q.4	(a)		03
	(b)	Explain the concept and working principle of MHD	04
	(c)	Write a short note on any two wave energy conversion devices	07

(a) Explain the concept of Evacuated tube collector

Q.4

Q.5

(b)	Explain hot dry rock geothermal energy.	04
(c)	State the principle of Ocean Thermal Energy Conversion (OTEC). Explain the working of the closed-cycle OTEC system.	07
(a)	Define: i) Cumulative Savings ii) Life cycle savings iii) Payback period	03
(b)	Explain the working of the Solar Cooker.	04
(c)	A solar hot water system has an array of flat-plate collectors with an area of 50 m² installed in a factory. It costs Rs.25000/- and is set up with an initial down payment of 20 % of the investment, the balance of 80 % is taken as a soft loan to be repaid in equal installments over 5 years at an interest rate of 5%. The cost of conventional fuel saved in the 1 st year is Rs 50000 and this cost increases with a rate of 5 % every year. The annual expenditure required is Rs20000/- in the 1 st year and this expense increases by 5% every year. Tax deductions are permissible only on depreciation, which is allowed at the rate of 25 % each year, and the company tax rate is 30%. Assuming that the cost of an equivalent conventional energy system is Rs 25000 and that the market discount rate is 10 %. Calculate the CS over 15 years. Also, calculate the payback period with and without discounting.	07

Q.5 (a) Calculate the annual cost of a solar energy system with the characteristics tabulated below.

Factor	Specification
Expected system lifetime t	20
(Yr.)	
Discount rate (%)	8
Collector area Ac (m2)	20
Collector cost (Rs/ m2)	100
Storage cost (Rs/ m2)	6.25
Cost of control system (Rs.)	100
Miscellaneous cost (Rs.)	200+(5 Ac)
Capital recovery factor for 20	0.102
years at 8 %	

(b) Enlist various approaches to using solar energy for refrigeration and explain any one of them.

(c) Write a short note on clean development mechanisms 07

03