Seat No.:	Enrolment No.

CHIARAT TECHNOLOGICAL UNIVERSITY

		DE CEMECTED VII (NEW) EVAMINATION WINTED 202	•
C	a a 4 .	BE - SEMESTER-VII (NEW) EXAMINATION – WINTER 202	
•		Code:3171911 Date:12-0	J1-2U2S
•		Name: Advanced Heat Transfer	
		:30 AM TO 01:00 PM Total Ma	rks:70
Instru			
		Attempt all questions.	
		Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
	4 .	Simple and non-programmable scientific calculators are allowed.	
	→.	Simple and non-programmable scientific calculators are anowed.	MARKS
0.1	()		
Q.1	(a)	Write the general heat conduction equation for Cartesian co-ordinates.	03
		From it derive equation for following conditions: i) Steady state with internal heat generation	
		ii) Unsteady state without internal heat generation	
	(b)	List common applications of finned surfaces.	04
	(c)		07
	(C)	conduction.	07
0.2	(2)	What do you man by thermal contact register as 2 List any two feators	03
Q.2	(a)	What do you mean by thermal contact resistance? List any two factors that affect thermal contact resistance	03
	(b)		04
	(0)	infinitely long fin.	04
	(c)	•	07
	(-)	in a fluid at 50 °C and an electric current of intensity 300 amps passes	
		through it. If conductance at wire surface is 4 kW/m ² -deg, workout the	
		steady state temperature i) at the centre and ii) at surface of wire. Take	
		conductivity of wire as 20 W/m-deg and resistivity as 70 x 10 ⁻⁶ ohm-cm.	
		OR	
	(c)	Explain the analytical method for two dimensional steady state heat	07
		conduction in rectangular plate.	
Q.3	(a)	Define: Nusselt Number, Reynolds Number, Prandtl Number	03
	(b)		04
		detail?	
	(c)	The water in a tank at 20 °C is heated by passing the steam through a	07
		pipe of 50 cm long and 5 cm in diameter. If the pipe surface temperature	
		is maintained at 80 °C. Find the heat loss from the pipe per hour.	
		Properties of water at 50 °C are $\mu = 0.55 \times 10^{-3}$, $\rho = 988.1 \text{kg/m}^3$, $\nu = 0.55 \times 10^{-6}$	
		0.556×10^{-6} , $\beta = 5.1 \times 10^{-4}$, $K = 0.64 \text{ W/ m-K}$, $Cp = 4200$	
		J/kg -K	
Ω	(a)	OR Discuss Heat transfer in high velocity flow	03
Q.3	(a) (b)	• •	03 04
	(c)	Discuss the hydrodynamic boundary layer on flat plate.	07
	(0)	Discuss the francismine boundary fayer of flat plate.	07
Q.4	(a)	• • • • • • • • • • • • • • • • • • •	03
	(b)	condensation? What are the effects of non-condensable gases in condensing	Ω4
	(b)	What are the effects of non-condensable gases in condensing equipments?	04
	(c)		07
	. ,	and are exposed to steam at atmospheric pressure, calculate the mass of	

		steam condensed per unit length of tube if the tube wall temperature	
		remains at 98 °C. Take $\mu = 282 \times 10^{-6}$, $\rho = 960 \text{ kg/m}^3$, K	
		= 0.61 W/ m-K, h_{fg} = 2255 kJ/kg and Ts = 100 ° C.	
		OR	
Q.4	(a)	List the applications where heat transfer with phase change is to be considered	03
	(b)	Derive the equation of critical diameter of bubble.	04
	(c)	Discuss different boiling regimes in the boiling process.	07
Q.5	(a)	Write the statement of Kirchoff's low and define emissivity.	03
	(b)	Black body of 0.2 m ² area has effective temperature of 800 K. Calculate the total rate of energy emission and the intensity of normal radiation.	04
	(c)	Derive the equation of heat flow between infinite long parallel plates.	07
	` '	OR	
0.5	(a)	Define intensity of the radiation. How the solid angle is measured?	03
	(b)	Write a short note on green house effect.	04
	(c)	Discuss the salient features of radiation from gases and vapors.	07
