GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VII (NEW) EXAMINATION – WINTER 2024

		bject Code:3171925	Date:16-12-2024	
		bject Name: Advanced Machine Design		
	Tir	me:10:30 AM TO 01:00 PM	Total Marks:70	
	Inst	ructions:		
		1. Attempt all questions.		
		 Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 		
		4. Simple and non-programmable scientific calculators	s are allowed.	
Q.1	(a)	What is stress concentration? State the causes for the sa		03
	(b)	Explain the factors that affect endurance limit. Also exp	plain how they are considered for	04
		design of mechanical element subjected to cyclic load.		
	(c)	Discuss the Palmgren- Miner rule for life prediction	for completely reversed variable	07
		amplitude loading.		
0.4	()			0.2
Q.2	(a)	Explain the term wear.	a a hani a alayatana	03
	(b) (c)	Explain in detail different types of wear experienced in n Give a definition for fretting, and distinguish among the r	<u>₹</u>	04 07
	(C)	fatigue, fretting wear, and fretting corrosion.	clated failure phenomena of fretting	U /
		OR		
	(c)	The load on a bolt consists of an axial pull of 10 kN tog	ether with a transverse shear force	07
		of 5 kN. The elastic limit in bolt material is reached at 2	80 MPa. Determine the diameter	
		of bolt using (a) Maximum shear stress theory (b) Disto	rtion energy theory. Take FOS 3	
		on elastic limit and Poisson's ratio equal to 0.3.		
Q.3	(a)	What are the important theories of elastic failures & exp	plain why it is required to	03
	. ,	consider?	1	
	(b)	Explain the factors for controlling the surface fatigue.		04
	(c)	Derive relationship between crack tip opening displace	ement (CTOD) and stress intensity	07
		factor for Mode I (KI) for small scale yielding.		
0.2	(a)	OR Define the terms (i) incomplete Energy Mechanical	LEEM)(ii)Electe bydgodynamia	0.2
Q.3	(a)	Define the terms :(i)Linear Elastic Fracture Mechanics(lubrication (iii) Hertz's Contact stress.	LEFW)(II)Elasto-llydfodyllaillic	03
	(b)	Explain any two modes of the crack displacement with	sketch	04
	(c)	A ball thrust bearing with 7 spherical balls each of 10 mr		07
	(-)	its races through the balls. Races are flat. All parts are ha	•	
		lb per ball. Calculate the size of the contact patch on a rad		
		Assume the 7 balls share the load equally. The rotational		
		can be considered a static loading problem.		
Q.4	(a)	Explain the stress relaxation.		03
	(b)	Explain the Larson-Miller Parameters for creep deformation.	ation with diagram.	04
	(c)	A pin-on-disk friction testing apparatus as shown in	<u> </u>	07
	(-)	rounded end of a copper pin of 80 Vickers hardness being		
		the surface of a rotating steel disk of 210 Brinell hardnes	<u>-</u>	
		of 16 mm; the disk rotates 80 rpm. After 2 hours the pin ar	<u> </u>	
		that adhesive wear has caused weight losses equivalent to	wear volumes of 2.7mm3 and 0.65	

mm3 for the copper and steel, respectively. Compute the wear coefficients.

Q.4	(a)	Distinguish the difference between high-cycle fatigue and low-cycle fatigue	03
	(b)	Discuss effect of roughness, velocity and lubrication on friction.	04
	(c)	Explain the terms: (i) Fracture toughness (ii) Stress intensity factor (iii) Fatigue crack propagation.	07
Q.5	(a)	Enlist the factors that may affect S-N curves.	03
	(b)	Differentiate between Split and Non-split Mechanical housing.	04
	(c)	Discuss different types of materials used for Mechanical Housings.	07
	. ,	OR	
0.5	(a)	Explain functions of Mechanical Housings.	03
	(b)	Differentiate between Noncontact and Contact Seals used in Mechanical Housing. 04	
	(c)	Define functions of Mechanical Housing Seals. Enlist the different types of Mechanical Housing Seals.	

Figure: 1
