GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2022

Subject Code:3171925 Date:12-01-2023

Subject Name: Advanced Machine Design

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

MARKS

03

- Q.1 (a) Give an example of following failure modes:

 (1) brittle fracture (2) ductile fracture (3) buckling
 - (b) The aluminum alloy 2024-T4 is subjected to cyclic loading between σ_{min} = 04 172 and σ_{max} = 430 MPa. What life is expected? Take constants σ_f ' = 900 MPa and b = -0.102 for this material.
 - (c) A spherical pressure vessel is made of ASTM A517-F steel and operates at room temperature. The inner diameter is 1.5 m, the wall thickness is 10 mm, and the maximum pressure is 6 MPa. Is the leak-before-break condition met? What is the safety factor on K relative to K_{IC} , and what is the safety factor against yielding?

Take fracture toughness for ASTM A517-F, $K_{IC} = 187$ MPa \sqrt{m} .

Q.2 (a) Define the terms creep, creep rupture, and stress rupture.

03

(b) Explain three modes of fracture failure with neat sketch.

- 04
- (c) A steel plate (Sys = 350 MPa) of width 80 mm and thickness 5 mm has a centre crack 2a = 40 mm length. If the far field stress is 150 MPa, determine the SIF and the length of the effective crack, using Irwin's correction.

OR

(c) A center-cracked plate, as in Figure. 1, has dimensions b = 50 mm, t = 5 mm, 07 and large h; a force of P = 50 kN is applied.

Figure. 1

- (a) What is the stress intensity factor K for a crack length of a = 10 mm?
- (b) For a = 30 mm?
- Q.3 (a) Explain three stages of creep.

- 03
- **(b)** Why should we evaluate the SIF for a crack in a component?
- 04

(c) Derive relationship between crack tip opening displacement (CTOD) and of stress intensity factor for Mode I (K_I) for small scale yielding.

OR

Q.3 (a) Critical SIF of a material depends on many factors?

03

(b) Discuss three ways for designing to avoid surface failure.

- 04
- (c) Discuss the Palmgren–Miner rule for life prediction for completely reversed **07** variable amplitude loading.
- **Q.4** (a) What is need of combined seals?

03

- **(b)** Explain the effects of cracks on brittle versus ductile behaviour.
- 04 07
- (c) An axially loaded straight cylindrical bar of diameter d = 12.5 mm is to be made of 2024-T4 aluminum with ultimate strength of Su = 469 MPa, yield strength Syp = 331 MPa, and fatigue properties shown in Figure 2. The bar is to be subjected to a completely reversed axial force of 27 kN, and must last for at least 10^7 cycles.
 - (1). What is the governing failure mode? (b). Is failure predicted to occur?

Figure. 2

OR

Q.4 (a) Distinguish the difference between high-cycle fatigue and low-cycle fatigue.

03 04

(b) Explain rain flow cycle counting method with the help of suitable example.

07

(c) The ball and socket joint (Figure 3) at the end of a rocker arm has a hardened-steel spherical surface 10 mm in diameter fitting in a hard-bronze bearing alloy spherical seat 10.1 mm in diameter. What maximum contact stress will result from a load of 2000 N?

Figure. 3

Take for steel Young's Modulus, E = 207 GPa and Poisson's ratio, v = 0.30 and for bronze E = 110 GPa and v = 0.33.

Q.5	(a)	Describe the usual consequences of surface fatigue.	03
	(b)	Give a definition for fretting, and distinguish among the related failure	04
		phenomena of fretting fatigue, fretting wear, and fretting corrosion.	
	(c)	Explain contact seals and non-contact seals.	07
		OR	
Q.5	(a)	Enlist the factors that may affect S-N curves.	03
	(b)	Explain three-stage gear deformation under load attached with a foundation with neat sketch.	04
	(c)	Explain housings split at right angle to the axes of the shafts with suitable example.	07
