| Seat No.: | Enrolment No. | |-------------|---------------------| | Seat 1 1011 | E moment 101 | ## **GUJARAT TECHNOLOGICAL UNIVERSITY** **BE - SEMESTER-VII (NEW) EXAMINATION - SUMMER 2024** **Total Marks:70** | Subject Code: 3171923 | Date:01-06-2024 | |---|-----------------| | Subject Name: Internal Combustion Engine | | Time:02:30 PM TO 05:00 PM Instructions: - 1. Attempt all questions. - 2. Make suitable assumptions wherever necessary. - 3. Figures to the right indicate full marks. - 4. Simple and non-programmable scientific calculators are allowed. | Q.1 | (a)
(b)
(c) | Differentiate SI and CI engines. Compare the properties of petrol and diesel with unconventional fuels. A single cylinder, 4-stroke diesel engine having swept volume of 850 cm ³ is tested at 300 rpm. When the braking torque of 50 Nm is applied, analysis of indicator diagram gives a mean effective pressure of 10 bar. Find the brake power and mechanical efficiency of the engine. | 03
04
07 | |-----|-------------------|--|----------------| | Q.2 | (a) | Explain the working principle of exhaust gas calorimeter. | 03 | | | (b) | Explain the orifice-chamber method for air consumption measurement in IC engine with neat sketch. | 04 | | | (c) | A 4 cylinder 4-stroke SI engine of 60 mm bore and 90 mm stroke was tested at constant speed. The fuel supply was fixed to 0.13 kg/min and plugs of 4-cylinder were successively short-circuited without change of speed. The power measurements were as follows: BP with all cylinder working = 16.25 kW; BP with cylinder 1 cut-off = 11.55 kW; BP with cylinder 2 cut-off = 11.65 kW; BP. with cylinder 3 cut-off = 11.70 kW; BP with cylinder 4 cut-off = 11.50 kW. The calorific value of fuel is 42 MJ/kg. Find Indicated thermal efficiency of the engine and compare it with air standard efficiency. The clearance volume of one cylinder is taken as 50 cm ³ . OR | 07 | | | (c) | The following observations are made during a trail on an oil engine. (1) Motor power to start the engine = 10 kW (2) R.P.M = 1800 (3) Brake torque = 345 Nm (4) Fuel used = 16 kg/hour (5) C.V. of fuel used = 42 MJ/kg (6) Air supplied = 4.85 kg/min (7) Quantity of cooling water = 17 kg/min (8) Outlet temperature of cooling water = $68 ^{0}\text{C}$ (9) Room temperature = $21 ^{0}\text{C}$ (10) Exhaust gas temperature = $400 ^{0}\text{C}$. Take C_{pw} = 4.2 KJ/kg . K and C_{pg} = 1.25 KJ/kg .K. Determine (a) B.P. (b) Mechanical efficiency (c) bsfc and (d) draw a heat balance sheet on kW basis and percentage basis. | 07 | | Q.3 | (a) | Define the following terms: (1) Ignition lag (2) Highest useful compression ratio | 03 | | | (b) | (HUCR) (3) Performance number
Explain the effects of knocking in SI engines in details. | 04 | | | (c) | Explain the stages of combustion in CI engine using P- Θ (pressure-crank angle) diagram in details. | 07 | | 0.2 | | OR | 0.4 | | Q.3 | (a) | Differentiate knocking in SI and CI engines. | 03 | | | (b) | Explain the Lanova air-cell combustion chamber with neat sketch. | 04 | | | (c) | Enlist various design consideration parameters for good combustion chambers. Also explain any one modern combustion chamber used in SI engine with neat sketch. | 07 | |-----|------------|---|----| | Q.4 | (a) | Enlist the functions of lubrication system. Designate the lubricating oil grade: SAE 20W/40. | 03 | | | (b) | Differentiate air cooling and water-cooling system in details. | 04 | | | (c) | Differentiate supercharging and turbocharging in details. | 07 | | | | OR | | | Q.4 | (a) | Define EURO-III and EURO-IV emission norms. | 03 | | | (b) | Explain the working principle of stratified charge engine with neat sketch. | 04 | | | (c) | Explain pressure feed lubrication system with neat sketch. | 07 | | Q.5 | (a) | Give the functions of following parts of simple carburetor. (1) Venturi (2) Float and float chamber (3) chock valve | 03 | | | (b) | Explain the compensating or double jet with neat sketch. | 04 | | | (c) | Enlist various types of nozzles used in CI engine. Also explain the Individual pump system with neat sketch. | 07 | | | | OR | | | Q.5 | (a) | Enlist the requirements of ideal injection system. | 03 | | | (b) | Write the chemically correct combustion equation for octane and define the practical A:F (air-fuel ratio) limit for SI engine. | 04 | | | (c) | Explain the following terms in details: (1) Ice formation (2) Vapour lock (3) Back-firing | 07 | | | | ***** | |