Seat No.:	Enrolment No.
Seat 1 1011	E moment 101

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - SUMMER 2024

Total Marks:70

Subject Code: 3171923	Date:01-06-2024
Subject Name: Internal Combustion Engine	

Time:02:30 PM TO 05:00 PM Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Q.1	(a) (b) (c)	Differentiate SI and CI engines. Compare the properties of petrol and diesel with unconventional fuels. A single cylinder, 4-stroke diesel engine having swept volume of 850 cm ³ is tested at 300 rpm. When the braking torque of 50 Nm is applied, analysis of indicator diagram gives a mean effective pressure of 10 bar. Find the brake power and mechanical efficiency of the engine.	03 04 07
Q.2	(a)	Explain the working principle of exhaust gas calorimeter.	03
	(b)	Explain the orifice-chamber method for air consumption measurement in IC engine with neat sketch.	04
	(c)	A 4 cylinder 4-stroke SI engine of 60 mm bore and 90 mm stroke was tested at constant speed. The fuel supply was fixed to 0.13 kg/min and plugs of 4-cylinder were successively short-circuited without change of speed. The power measurements were as follows: BP with all cylinder working = 16.25 kW; BP with cylinder 1 cut-off = 11.55 kW; BP with cylinder 2 cut-off = 11.65 kW; BP. with cylinder 3 cut-off = 11.70 kW; BP with cylinder 4 cut-off = 11.50 kW. The calorific value of fuel is 42 MJ/kg. Find Indicated thermal efficiency of the engine and compare it with air standard efficiency. The clearance volume of one cylinder is taken as 50 cm ³ . OR	07
	(c)	The following observations are made during a trail on an oil engine. (1) Motor power to start the engine = 10 kW (2) R.P.M = 1800 (3) Brake torque = 345 Nm (4) Fuel used = 16 kg/hour (5) C.V. of fuel used = 42 MJ/kg (6) Air supplied = 4.85 kg/min (7) Quantity of cooling water = 17 kg/min (8) Outlet temperature of cooling water = $68 ^{0}\text{C}$ (9) Room temperature = $21 ^{0}\text{C}$ (10) Exhaust gas temperature = $400 ^{0}\text{C}$. Take C_{pw} = 4.2 KJ/kg . K and C_{pg} = 1.25 KJ/kg .K. Determine (a) B.P. (b) Mechanical efficiency (c) bsfc and (d) draw a heat balance sheet on kW basis and percentage basis.	07
Q.3	(a)	Define the following terms: (1) Ignition lag (2) Highest useful compression ratio	03
	(b)	(HUCR) (3) Performance number Explain the effects of knocking in SI engines in details.	04
	(c)	Explain the stages of combustion in CI engine using P- Θ (pressure-crank angle) diagram in details.	07
0.2		OR	0.4
Q.3	(a)	Differentiate knocking in SI and CI engines.	03
	(b)	Explain the Lanova air-cell combustion chamber with neat sketch.	04

	(c)	Enlist various design consideration parameters for good combustion chambers. Also explain any one modern combustion chamber used in SI engine with neat sketch.	07
Q.4	(a)	Enlist the functions of lubrication system. Designate the lubricating oil grade: SAE 20W/40.	03
	(b)	Differentiate air cooling and water-cooling system in details.	04
	(c)	Differentiate supercharging and turbocharging in details.	07
		OR	
Q.4	(a)	Define EURO-III and EURO-IV emission norms.	03
	(b)	Explain the working principle of stratified charge engine with neat sketch.	04
	(c)	Explain pressure feed lubrication system with neat sketch.	07
Q.5	(a)	Give the functions of following parts of simple carburetor. (1) Venturi (2) Float and float chamber (3) chock valve	03
	(b)	Explain the compensating or double jet with neat sketch.	04
	(c)	Enlist various types of nozzles used in CI engine. Also explain the Individual pump system with neat sketch.	07
		OR	
Q.5	(a)	Enlist the requirements of ideal injection system.	03
	(b)	Write the chemically correct combustion equation for octane and define the practical A:F (air-fuel ratio) limit for SI engine.	04
	(c)	Explain the following terms in details: (1) Ice formation (2) Vapour lock (3) Back-firing	07
