Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - SUMMER 2024

Subject Code: 3171921 Date:20-05-2024

Subject Name: Metal forming analysis

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a)	What do you understand by forming of metal	03
	(b)	What is recrystallization? State its important in metal forming.	04
	(c)	Explain in detail Two-Dimensional Mohr's circle diagram for stress	07
Q.2	(a)	What is bending? Also explain bend angle and bend allowance with sketch.	03
	(b)	Elaborate board drop hammers used in forging process with neat sketch.	04
	(c)	Write short note on (1) forming limit diagram (2) anisotropy of sheet metal OR	07
	(c)	What is Hencky's first theorem concerning slip lines in metal forming, and prove it with usual notations.	07
Q.3	(a)	Explain effect of (1) strain rate (2) Temperature (3) friction on metal forming process.	03
	(b)	Draw sketch of (1) Two high (2) three high (3) four high (4) cluster, rolling mill with usual notation.	04
	(c)	Describe Upper bound and Lower bound theorem in metal forming. OR	07
Q.3	(a)	Explain (1) absolute draught (2) relative draught (3) co-efficient of elongation in rolling process	03
	(b)	Define for forging. (1) Flash (2) Cutter (3) Draft (4) Parting line	04
	(c)	Write short not on (1) hydrostatic extrusion and (2) Impact extrusion.	07
Q.4	(a)	A shell having 32 mm diameter and 108 mm height with a wall thickness of 0.8 mm is to be manufactured from 1.1 mm thick metallic sheet. Calculate the blank diameter.	03
	(b)	State and explain different materials used for making wire drawing dies.	04
	(c)	Explore the theory of slip lines from a different angle.	07
0.4	(a)	OR Calculate the bending force for a 45 ⁰ bend of aluminium sheet 1.8 mm thick	03
Q.4	(a)	and 1200 mm long with a die opening 8 times the metal thickness. Take die opening factor 1.3 and ultimate tensile strength is 3400 kg/cm ²	U3
	(b)	What is cutting force and how it reduces in sheet metal work.	04
	(c)	What you know about Isotropic and Kinematic work hardening explain with neat sketches.	07
Q.5	(a)	Explain relationship between extrusion ratio, temperature and pressure	03
	(b)	Explain Nesting in sheet metal work.	04
	(c)	Classify dies use in sheet metal and explain progressive die with neat sketch.	07

OR

Q.5	(a)	Explain function of pilot and state method of fitting of pilot.		
	(b)	Define (1) Notching (2) Nibbling (3) Slitting (4) Perforating for press work.		
	(c)	A steel washer is of 44 mm outer diameter and 25 mm inner diameter and is		
		12 mm thick. If maximum shear stress is 405 N/mm ² and percentage		
		penetration is 24 find (1) work done (2) shear to be ground if maximum punch		
		force is to be reduced to 0.05 MN		
