Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

RE CEMESTED VII (NEW) EVAMINATION WINTED 2022

DE - SEVIESTER-VII (NEVV) EXAMINATION - VVINTER 2022		
Subject Code:3171924	Date:12-01-2023	
Subject Name:Principles of Combustion		
Time:10:30 AM TO 01:00 PM	Total Marks:70	

Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary.
 Figures to the right indicate full marks.

4. Simple and non-programmable scientific calculators are allowed.			
			MARKS
Q.1	(a)	List the main Comparisons between Sub and supersonic combustion thermodynamics.	03
	(b)	Explain heat of reaction and formation in brief.	04
	(c)	Discuss Global versus Elementary reactions.	07
Q.2	(a)	Explain Mixture fraction in brief.	03
	(b)	In details explain Species mass conservation.	04
	(c)	Explain the fundamental one-dimensional conservation laws in details.	07
		OR	. =
0.0	(c)	Explain and derive conserved scalar energy equation.	07
Q.3	(a)	Explain heterogeneous reactions.	03
	(b)	Explain constant volume reactor.	04
	(c)	Explain Well Stirred flow reactor and Derive expression for it.	07
		OR	
Q.3	(a)	Explain Pseudo-first-order reactions.	03
	(b)	Determine the stoichiometric equation for combustion of (a) Oxygen (b) Air.	04
	(c)	Explain the H2-O2 system in details.	07
Q.4	(a)	Enlist various factors affecting the flame length.	03
	(b)	Enlist various methods for flame stabilization and explain ant one in brief.	04
	(c)	Explain chain and chain branching reactions with suitable examples in brief.	07
OR			
Q.4	(a)	Explain Soot Formation.	03
	(b)	Explain counter flow flames in details.	04
	(c)	Explain the factors influencing flame velocity and thickness.	07
Q.5	(a)	List any three Applications of turbulent flames.	03
	(b)	Write short note on "Adiabatic Flame Temperature".	04
	(c)	Explain Simple Model of Droplet Evaporation with all Assumptions.	07
OR			
Q.5	(a)	Explain Jet Flames in Brief.	03
	(b)	Explain the structure of Turbulent Premixed Flames.	04
	(c)	Explain wrinkled laminar flame regime with neat sketch.	07
