Seat No.: Enrolmen

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION – WINTER 2023

	U	ct Code:31/192/ Date:01-12-2	023
S	ubje	ct Name: Turbo Machines	
T	ime:	10:30 AM TO 01:00 PM Total Marks	:70
In	struc	tions:	
		1. Attempt all questions.	
		2. Make suitable assumptions wherever necessary.	
		3. Figures to the right indicate full marks.	
		4. Simple and non-programmable scientific calculators are allowed.	
Q.1	(a)	Define turbomachines. Explain driving and driven type of turbomachines.	03
V.1	(b)	Differentiate fans and blowers. Also discuss noise issue for blowers and fans.	04
	(c)	Explain significance of following terms-	07
	(C)	Flow coefficient	07
		2. Head coefficient	
		3. Power coefficient	
Q.2	(a)	Draw superimposed velocity triangle of axial flow turbines with proper	03
	(b)	notations.	0.4
	(b)	Write a note on compounding in axial flow turbines. Classify compounding.	04 07
	(c)	The data pertaining to an impulse turbine is as follows: Steam velocity = 500 m/s, blade speed = 200 m/s, Exit angle of moving blade =	U/
		20°. Neglecting the effect of friction, when passing through blade passages,	
		determine: (a) inlet angle of moving blade, (b) exit velocity and direction, (c)	
		work done per kg of steam, (d) axial thrust and power developed for a steam	
		flow rate of 5 kg/s and (e) diagram or blade efficiency.	
		OR	
	(c)	Draw and explain velocity triangle for inward flow radial (IFR) turbine. Also	07
		show that for 90° IFR turbine, stage loading coefficient is unity.	
Q.3	(a)	Define degree of reaction for an IFR turbine stage.	03
	(b)	Explain internal and mechanical losses occurred into the axial flow compressor.	04
	(c)	The following data refers to an axial flow compressor:	07
		Relative flow angle at inlet, $\beta_1 = 60^\circ$, turning angle = 30° and difference of whirl	
		velocity between inlet and outlet, $\Delta C_w = 100$ m/s, degree of reaction 50%, speed	
		36000 rpm, mean diameter = 140 mm, inlet pressure = 2 bar and inlet	
		temperature = 57° C. Find air flow angle, α_1 , the pressure rise, the amount of air	
		handled and power, if the blade height is 20 mm. OR	
Q.3	(a)	Define blade to gas speed ratio for an axial flow turbine.	03
Q. .5	(b)	Describe two stage axial flow compressors consist of inlet guide vanes with	03
	(6)	proper schematic diagram.	04
	(c)	Plot <i>h-S</i> diagram for axial flow compressor and define overall total-to-total	07
	(-)	(isentropic) efficiency.	-
Q.4	(a)	Show slip and velocity distribution using velocity triangle of centrifugal	03
-		compressor.	
	(b)	Discuss general (Ideal) characteristics of a centrifugal Compressor.	04
	(c)	Explain vaneless and vaned diffuser for a centrifugal compressor.	07
		OR	
Q.4	(a)	What is the function of diffuser in centrifugal compressor? Also draw a sketch	03
	(3.)	of volute or scroll collector.	6.4
	(b)	List out and explain losses in centrifugal compressor.	04

03
04
07
03
04
xplain in 07
