		GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER-IV (NEW) EXAMINATION – WINTER 202	=	
Subject Code:3140610 Date:26-1				
•		Name:Complex Variables and Partial Differential Equation	-	
Time:02:30 PM TO 05:00 PM Total Mar				
Instru	ctions	s:		
		Attempt all questions. Make suitable assumptions wherever necessary.		
		Figures to the right indicate full marks.		
		Simple and non-programmable scientific calculators are allowed.		
Q.1	(a)	F: 1 1 - 2 - 2	Marks 3	
Q.1	(a)	Find the principal argument of $z = \frac{-2}{1+i\sqrt{3}}$.		
	(b) (c)	Find the constants a, b, c if $f(z) = x + ay + i(bx + cy)$ is analytic. Show that $u(x, y) = x^2 - y^2 + x$ is harmonic. Find the	4 7	
	(C)	corresponding analytic function $f(z) = u + iv$,	
Q.2	(a)	Sketch the set $0 \le argz \le \frac{\pi}{4}$ and determine is it domain?	3	
	(b)	3	4	
		Find the continued product of all the values of $\left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^{\frac{1}{4}}$		
	(c)	Find and sketch the image of the region $ z > 1$ under the transformation $w = 4z$.	7	
	(c)	OR Find the bilinear transformation that maps the points	7	
	(C)	$z_1 = 1$, $z_2 = i$, $z_3 = -1$ onto $w_1 = -1$, $w_2 = 0$, $w_3 = 1$ respectively. Find the image of $ z < 1$ under this transformation.	,	
Q.3	(a)	Evaluate $\int_C e^{\sin z^2} dz$, where C is $ z = 1$.	3	
	(b)	Expand $f(z) = e^z$ in a Taylor series about $z = 0$.	4	
	(c)	Evaluate $\int_C \frac{1}{(z-1)(z-2)^2} dz$, where C is $ z-z = \frac{1}{2}$.	7	
Q.3	(a)	Classify the poles of $f(z) = \frac{1}{z^2 - z^6}$.	3	
Q.S	(a)	Classify the poles of $f(z) = \frac{1}{z^2 - z^6}$.	3	
	(b)	Find the radius and region of convergence for $\sum_{n=1}^{\infty} \frac{z^n}{2^{n+1}}$.	4	
	(c)	Expand $f(z) = \frac{1}{(z+1)(z-2)}$ in Laurent's series in the following	7	
		regions: (i) $ z < 1$ (ii) $1 < z < 2$ (iii) $ z > 2$.		

Q.4	(a)	Form a partial differential equation for the equation $z = ax + by + ct$	3
	(b)	Solve $xp + yq = 3z$.	4
	(c)	Solve $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$.	7
		OR	
Q.4	(a)	Solve $z = px + qy - 2\sqrt{pq}$.	3
	(b)	Form the partial differential equation of $z = f\left(\frac{x}{y}\right)$.	4
	(c)	Solve $px + qy = pq$ by Charpit's method.	7
Q.5	(a)	Solve $\frac{\partial^2 u}{\partial x \partial y} = e^{-t} \cos x$.	3
	(b)	Solve $(D^2 + 10DD' + 25D'^2)z = e^{3x+2y}$.	4
	(c)	Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$,	7
		$u(x,0) = 6e^{-3x}$.	
		OR	
Q.5	(a)	Solve $\frac{\partial^3 z}{\partial x^3} - 3 \frac{\partial^3 z}{\partial^2 x \partial y} + 2 \frac{\partial^3 z}{\partial y^3} = 0$.	3
	(b)	Solve $\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = 2e^{2x}$.	4
	(c)	Using separable variable technique, find the acceptable general	7
		solution to the one-dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ and find	
		the solution satisfying the condition $u(0,t) = u(\pi,t) = 0$ for $t > 0$	
		$0 \text{ and } u(x,0) = \pi - x, 0 < x < \pi.$	
