Seat No.:	Enrolment No.
-----------	---------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV(NEW) EXAMINATION - WINTER 2022

Subject Code:3140610 Date:16-12-2022
Subject Name:Complex Variables and Partial Differential Equations
Time:10:30 AM TO 01:00 PM Total Marks:70
Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

		Simple and non-programmable scientific calculators are allowed.	
			Marks
Q.1	(a)	Find the real and imaginary parts of $f(z) = z^2 + \bar{z}$.	03
	(b)	Evaluate $(1 + i\sqrt{3})^{60} + (1 - i\sqrt{3})^{60}$.	04
	(c)	Define Harmonic function. Show that $u(x, y) = \sin z$ is analytic everywhere. Also, find $f'(z)$.	07
Q.2	(a) (b)		03 04
		Expand $f(z) = \frac{1}{(z-2)(z-3)}$ valid for the region	07
		(i) $ z < 2$ (ii) $2 < z < 3$ (iii) $ z > 3$.	
	()	OR	0.
	(c)	Show that $u(x, y) = y^3 - 3x^2y$ is harmonic in some domain D and find the conjugate $v(x, y)$	07
Q.3	(a)	Check whether the function $f(z) = xy + iy$ is analytic or not at any	03
	(b)	point.	04
	(b)	C(z-1)(z-2)	
	(c)	Evaluate the followings: (i) $\int_C \frac{2z+3}{z^2-4} dz$, counter clockwise around the circle $C: z-2 =1$.	07
		(ii) $\int_C \frac{e^z + z}{z^2 - 1} dz$, where C $C: z = 2$	
Q.3	(a)	Expand $f(z) = \frac{\cos z}{z^2}$ in Laurent's series about $z = 0$ and identify the	03
•	()	singularity.	
	(b)	Determine the bilinear transformation which maps the points $0, \infty, i$ into	04
	(a)	∞ , 1,0	07
	(c)	Using residue theorem, evaluate $\int_0^{2\pi} \frac{4d\theta}{5+4\sin\theta}$.	07
Q.4	(a)	Evaluate $\int_C Re(z)dz$, where c is the shortest path from 1+i to 3+2i	03
	(b)	Solve the partial differential equation $(D^2 - 5DD' + 6D'^2)z = e^{x+y}$.	04
	(c)	Obtain the complete integral of the followings:	07
		(i) $p^2 - q^2 = x - y$.	
		(ii) $z = px + qy - 2\sqrt{pq}$	

Q.4	(a)	Find the Laurent's series that represents the function $f(z) = z^2 \sin(\frac{1}{z^2})$	03
	(b) (c)	in the domain $0 < z < \infty$ Solve $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$	04 07
	(0)	Find the general solution of the partial differential equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ by method of separation of variables.	0,
Q.5	(a)	Solve $pq = p + q$	03
	(b)	Find a complete integral of the equation $p^2y(1+x^2) = qx^2$	04
	(c)	If a string of length l is initially at rest in equilibrium position and each	07
		of its points is given the velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = k \sin^3\left(\frac{\pi x}{l}\right)$, x being the	
		distance from an end point. Find the displacement of the string at any	

 \mathbf{OR}

Q.5 (a) Solve
$$\frac{\partial^2 z}{\partial x^2} = \sin x$$
.

(b) Solve: $(y+z)p + (z+x)q = x+y$

(c) A homogeneous rod of conducting material of length 100cm has its ends kept at zero temperature and the temperature initially is $u(x,0) = x, 0 \le x \le 100$. Find the temperature $u(x,0)$ at any time.

point.