GUJARAT TECHNOLOGICAL UNIVERSITY BE-SEMESTER-IV EXAMINATION - SUMMER 2025

•		le:3140610 Date:17 ne:Complex Variables and Partial Differential Equation	7-05-2025
Time:10:30 AM TO 01:00 PM Instructions: Total Marks:70			
1.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.		
			MARKS
Q.1		State: (i) Liouville Theorem and (ii) Cauchy Goursat Theorem Solve $x(y-z)p + y(z-x)q = z(x-y)$ Verify that $u(x,y) = y^3 - 3x^2y$ is harmonic in the whole complex plane and find its harmonic conjugate $v(x,y)$	03 04 07
Q.2	(a)	Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$	03
	(b)	Using residue disordin, evaluate $\int_{C(z-2)(z-1)} uz$	04
	(c)	counterclockwise around the circle $c: z = 3$ Evaluate $\int_{c} \frac{z-2}{z(z-1)} dz$ where c is the circle $ z = 3$	07
	(c)	Evaluate $\int_{c} \frac{e^{2z}}{(z+1)^4} dz$ where c is the circle $ z = 2$	07
Q.3	(a) (b)	Solve $(p-q)(z-px-qy)=1$ Discuss the convergence of $\sum_{n=1}^{\infty} \left(\frac{6n+1}{2n+5}\right)^2 (z-2i)^n$ and also find	03 04
	(c)	the radius and circle of convergence Find the Mobius transformation that maps $z_1 = 0, z_2 = -i, z_3 = 2i$ onto $w_1 = 5i, w_2 = \infty, w_3 = -\frac{i}{3}$ respectively. What are the invariant points of this transformation.	07
Q.3	(a)	Evaluate $\oint_c e^{z^2} dz$ where c is any closed contour. Justify your answer.	03
	(b)	Find the image of the infinite strip $0 \le x \le 1$ under the transformation $w = iz + 1$. Sketch the region in the $w - plane$.	04
	(c)	Prove that the n^{th} roots of unity are in geometric progression. Also, show that their sum is zero.	07
Q.4	(a)	Identify the type of singularity of $f(z) = \frac{2-e^z}{z^3}$	03
	(b) (c)	Show that $Log(i^3) \neq 3 \operatorname{Log} i$, for the principal branch Solve $zpq = p + q$ by using charpit's method	04 07
Q.4	(a)	OR Find the residue of function $f(z) = \frac{2z+3}{(z+2)^2}$	03

(b) Using CR equations, prove that $f(z) = \bar{z}$ is nowhere analytic

04

- (c) Determine the Laurent series expansion of $f(z) = \frac{1}{(z+1)(z+3)}$ valid **07** for (i)1 < |z| < 3 (ii)|z| > 3 (iii)0 < |z+1| < 2
- **Q.5** Classify second order homogeneous partial differential equations 03 as elliptic, parabolic or hyperbolic

i)
$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} - 12 \frac{\partial^2 z}{\partial y^2} = 0$$
 ii) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} = 0$

- i) $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial x \partial y} 12 \frac{\partial^2 z}{\partial y^2} = 0$ ii) $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial x \partial y} = 0$ **(b)** Solve $\frac{\partial^3 z}{\partial x^3} 3 \frac{\partial^3 z}{\partial x^2 \partial y} + 4 \frac{\partial^3 z}{\partial y^3} = e^{x+2y}$ 04
- (c) Using the method of separation of variable, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u, \quad u(x, o) = 6e^{-3x}$ **07**

OR

- (a) Form a partial differential equation by eliminating the arbitrary **Q.5 03** function from $z - xy + f(x^2 + y^2)$
 - **(b)** Solve 25r 40s + 16t = 004
 - Find the solution of the wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ such that $y = a \cos pt$ when x = l, and y = 0 when x = 0**07**