GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION – SUMMER 2024
Subject Code:3140610
Date:01-07-2024
Subject Name: Complex Variables and Partial Differential Equations

Time: 10:30 AM TO 01:00 PM Instructions: Total Marl			
11150	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
			Marks
Q.1	(a)	Find $ z $, Arg z and arg z for $z = \frac{-i}{1-i}$	03
	(b)	Define a bilinear transformation. Find the Mobius transformation which sends the points $z = -1, 0, 1$ of the z-plane onto the points $w = -1, -i, 1$ respectively in the w-plane.	04
	(c)	Define an analytic function. Show that $u(x,y) = 2x - x^3 + 3xy^2$ is a harmonic function. Determine also its harmonic conjugate $v(x,y)$ and the corresponding analytic function $f(z) = u + iv$.	07
Q.2	(a)	Evaluate $\int_C \frac{e^z}{(z-3)^2} dz$, where C: $ z = 2$.	03
		Evaluate $\int_C \frac{1}{z^3(z+4)} dz$, where C: $ z = 2$.	04
		Evaluate $\int_{c}^{2} z^{3}(z+4) dz$, where $c = z = 2$. Evaluate $\int_{0}^{2+i} (\bar{z})^{2} dz$, along the shortest path joining the two points	07
	(0)	Evaluate $\int_0^\infty (z)^2 dz$, along the shortest path joining the two points $z = 0$ and $z = 2 + i$.	· ·
		OR	
	(c)	Find the radius of convergence of (i) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} (z - 3i)^n$	04
		(ii) $\sum_{n=0}^{\infty} (6+8i)z^n$	03
Q.3	(a)	Find the Maclaurin's series for $f(z) = \frac{1}{1-z}$ about $z = 0$.	03
	(b)	Expand the function $f(z) = \frac{1}{4z-z^2}$ in Laurent's series in powers of z under the condition $0 < z < 4$.	04
	(c)	State Cauchy's Residue theorem. Using it integrate $f(z) = \frac{1}{z^3 - z^4}$	07
		counter clockwise around the circle $ z = \frac{1}{2}$.	
		OR	
Q.3	(a)	Expand $f(z) = \frac{1}{1-z}$ in powers of z, where $ z > 1$.	03
	(b)	Prove that $\int_{-\infty}^{\infty} \frac{\cos x}{(x^2+1)^2} dx = \frac{\pi}{e}$, by using complex integrals.	04
	(c)	Using Cauchy's Residue theorem, evaluate $\int_C \frac{z+1}{z^2-2z} dz$ counter clockwise around the circle $ z =3$.	07

Form a partial differential equation by eliminating arbitrary constants 03 **Q.4** from $(x-a)(y-b) = x^2 + y^2 + z^2$ Using Lagrange's method, solve the partial differential equation 04 **(b)** $v^2p - xvq = x(z - 2v).$ Using Charpit's method, solve the partial differential equation **07** (c) px + qy = pq. OR Form a partial differential equation by eliminating arbitrary function **Q.4** 03 from $z = xy + f(x^2 + y^2)$ Solve the non-linear partial differential equation $p^2 + q^2 = npq$. **(b)** 04 Using Charpit's method, solve the partial differential equation 07 $px + qy + p^2 + q^2 - z = 0$ Q.5 (a) Classify the partial differential equation $u_{xx} + 2u_{xy} + u_{yy} = 0$, as 03 hyperbolic, parabolic or elliptic. Solve the partial differential equation $\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = 2e^{2x}$ 04 **(b)** Find the solution of the one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ **07 (c)** satisfying the conditions $u(0,t) = u(\pi,t) = 0$; for t > 0 $u(x, 0) = \pi - x$; for $0 < x < \pi$. Q.5 Solve the partial differential equation $\frac{\partial^3 z}{\partial x^3} - 3 \frac{\partial^3 z}{\partial x^2 \partial y} + 4 \frac{\partial^3 z}{\partial y^3} = 0$ 03 04 Solve the partial differential equation $\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$ by using the method of separation of variables. Find the solution of the one dimensional wave equation $\frac{\partial^2 u}{\partial x^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ **07 (c)** satisfying the conditions u(0,t) = u(L,t) = 0; for t > 0, $u(x,0) = \frac{\pi x}{t}$; for 0 < x < L and $u_t(x,0) = 0$; for 0 < x < L.
