Seat No.: Enro

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION - SUMMER 2022 Subject Code:3140610 Date:02-07-2022

Subject Name: Complex Variables and Partial Differential Equations

Time: 10:30 AM TO 01:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary.
- Figures to the right indicate full marks.
- Simple and non-programmable scientific calculators are allowed.

		simple and non-programmable gereining careautors are and wear	
			MARKS
Q.1	(a)	Find an analytic function $f(z) = u + iv$ if $u = x^3 - 3xy$.	03
	(b)	Find the fourth roots of -1.	04
	(c)	(i) Find the image of infinite strip $0 \le x \le 1$ under the transformation $w = iz + 1$.	03
		(ii) Separate real and imaginary parts of $f(z) = z^2$.	04
Q.2	(a)	Evaluate $\int_{C} (x^2 + ixy) dz$ from (1, 1) to (2, 4) along the curve $x = t$, $y = t^2$.	03
	(b)	Determine the mobius transformation that maps $z_1 = 0, z_2 = 1, z_3 = \infty$	04
		onto $w_1 = -1, w_2 = -i, w_3 = 1$ respectively.	
	(c)	(i) Evaluate $\oint \frac{e^z}{(1-z)^3} dz$, where C is $ z = \frac{1}{2}$.	03

(i) Evaluate
$$\oint_C \frac{z(1-z)^3}{z(1-z)^3} dz$$
, where C is $|z| = \frac{1}{2}$.
(ii) Find the radii of convergence of $\sum_{n=1}^{\infty} \frac{z^n}{2^n + 1}$.

- Find the image of |z-1| = 1 under the mapping $w = \frac{1}{z}$. **07**
- Q.3 (a) Evaluate $\oint_C \frac{e^{2z}}{(z+1)^4} dz$, where C is the circle |z| = 2. 03
 - 04 Find Re s(f(z),4i), where $f(z) = \frac{z}{z^2 + 16}$.
 - (c) Expand $f(z) = \frac{1}{(z-1)(z+2)}$ in Laurent's series in the region **07** (i)|z| < 1, (ii)1 < |z| < 2, (iii)|z| > 2.

- Q.3 (a) Evaluate $\oint_C (x^2 y^2 + 2ixy) dz$, where C is the circle |z| = 1. 03
 - (b) Evaluate $P.V. \int_{-\infty}^{\infty} \frac{x \cos x}{x^2 + 9} dx$. 04
 - 07 Find Laurent's series that represent $f(z) = \frac{1}{z(z-1)}$ in the region (i)0 < |z| < 1, (ii)0 < |z-1| < 1.

Q.4	(a)	Solve $\frac{y-z}{yz}p + \frac{z-x}{zx}q = \frac{x-y}{xy}$.	03	
	(b)	·	04	
		and b from $z = (x + a)(y + b)$.		
	(c)	(i) Solve $\frac{\partial^3 z}{\partial x^3} = 0$.	03	
		(ii) Find complete integral of $p^2 + q^2 = z$.	04	
		OR		
Q.4	(a)	Solve $xp + yq = x - y$.	03	
	(b)	Form a partial differential equation by eliminating arbitrary function from $z = f(x/y)$.	04	
	(c)	(i) Solve $(D^2 - D'^2 + D - D')_z = 0$.	03	
		(ii) Solve $q = 3p^2$ by Charpit's method.	04	
Q.5	(a)	Solve $(r+3s+2t)=x+y$	03	
		Solve the p.d.e. $u_{xy} = -u_x$.	04	
		Find the deflection $u(x,t)$ of the vibrating string of length π and ends	07	
	(-)	fixed, corresponding to zero velocity and initial deflection $f(x) = k(\sin x - \sin 2x)$.		
OR				
Q.5	(a)	Solve $(D^2 + DD' + D' - 1)z = \sin(x + 2y)$.	03	
	(b)	Solve the p.d.e. $u_x + u_y = 2(x + y)u$.	04	
	(c)	Find the solution of $u_t = c^2 u_{xx}$ together with the initial and boundary	07	
		conditions $u(0,t) = u(l,t) = 0$ for all $t \ge 0$ and $u(x,0) = \sin \frac{\pi x}{l}$,		
		$0 \le x \le l$.		
