Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

Subject Code:3140611 EXAMINATION – WINTER 2023 Date:24-01-2024			
•		Name: Fluid Mechanics & Hydraulics	<i>,</i> – -
Time	Γime: 10:30 AM TO 01:00 PM Total Mar		ks:70
Instru			
	2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
Q.1	(a) (b)	· · · · · · · · · · · · · · · · · · ·	03 04
	(c)	State and derive Pascal's law.	07
Q.2	(a) (b) (c)	Explain equilibrium in floating bodies. Derive the expression for total pressure for a vertical plate submerged	03 04 07
		in the liquid. OR	
	(c)		07
Q.3	(a)	Define coefficient of contraction, coefficient of velocity and coefficient of discharge for the orifice.	03
	(b)	Give classification of Orifices. Give the difference between an orifice and a mouthpiece.	04
	(c)	A pipe of diameter 100 mm conveys water. The pressure difference between two points 50 m apart is 0.6 m of water. Calculate discharge through the pipe. Take friction factor $f = 0.025$. OR	07
Q.3	(a)	Which are the assumptions made in Bernoulli's theorem?	03
	(b) (c)	What are the advantages of triangular notch over a rectangular notch?	04 07
Q.4	(a)	• • • • • • • • • • • • • • • • • • • •	03
	(b) (c)		04 07
		OR	_
Q.4	(a) (b)		03 04
	(c)		07

(a) Differentiate between pipe flow and open channel flow.

Q.5

03

- (b) Derive the Hagen-Poiseuille equation for laminar flow in the circular pipe.
- (c) Fluid of density ρ and viscosity μ flows at an average velocity V through a circular pipe diameter d. show by dimensional analysis that the shear stress of the pipe wall.

$$\tau_o = \rho V^2 f \left[\frac{\rho V d}{\mu} \right]$$

OR

Q.5 (a) How repeating variables are selected in the dimensional analysis.
(b) Discuss briefly various similarities between the model and the prototype.
(c) Explain the Buckingham's π-theorem in dimensional analysis
07
