| Seat No.: | Englment No | |-----------|---------------| | Seal NO.: | Enrolment No. | ## GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (NEW) EXAMINATION - SUMMER 2022 | • | | Code:3140611 Date:04-0 | 7-2022 | |-----|--------------|--|----------| | • | :10 | Name:Fluid Mechanics & Hydraulics :30 AM TO 01:00 PM Total Mains: | rks: 70 | | | 1.
2. | Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed. | | | | | | MARKS | | Q.1 | (a)
(b) | | 03
04 | | | (c) | Write about different types of fluid in detail with example. | 07 | | Q.2 | (a) | Differentiate between Piezometer and U-tube manometer | 03 | | | (b) | Prove that the rate of increase of pressure in a vertically downward direction must be equal to the specific weight of the fluid at that point. | 04 | | | (c) | A differential manometer is connected at the two points A and B of two pipes as shown in Fig.1. The pipe A contains a liquid of sp.gr. = 1.5 while pipe B contains a liquid of sp.gr. = 0.9. The pressures at A and B are $1 \text{kgf/}cm^2$ and $1.8 \text{kfg/}cm^2$ respectively. Find the difference in mercury level in the differential manometer. | 07 | | | (c) | State and Prove Pascal's Law. | 07 | | Q.3 | (a)
(b) | | 03
04 | | | (c) | A pipe line which is 4 m in diameter contains a gate valve. The pressure at the centre of the pipe is 19.6 N/cm^2 . If the pipe is filled with oil of sp.gr. 0.87, find the force exerted by the oil upon the gate and position of centre of pressure. | 07 | | Q.3 | (a) | OR Define Laminar flow, stream line and path line. | 03 | | Q.S | (b) | | 04 | | | (c) | Define flow net and write in detail characteristics, applications and limitations of flow net. | 07 | | Q.4 | (a)
(b) | Explain Venturimeter and parts of Venturimeter with diagram. An orifice meter with orifice diameter of 150 mm is used to measure the rate of flow of oil in a pipe of 300 mm diameter. The manometer shows a pressure difference of 40 cm of mercury. Find the rate of flow of oil through pipe if sp.gr of oil is 0.8. Take coefficient of discharge for meter = 0.60 | 03
04 | | | (c) | | 07 | Q.4 (a) Enlist minor losses in flow through pipes. 03 | (b) | difference of pressure head between the two ends of a pipe 500 m apart | | |------------|--|---| | (c) | Derive Darcy–Weisbach equation for friction loss in the pipe. | 07 | | (a) | Define (i) Prismatic channel (ii) Gradually varied flow (iii) Wetted perimeter | 03 | | (b) | An irrigation lined canal of trapezoidal section has to carry a discharge of 12 cumec at a longitudinal slope of 0.00048. Find the dimensions of most economical section if channel has side slope of 3 horizontal to 2 vertical. Take Manning's constant n = 0.013. | 04 | | (c) | Derive the geometrical conditions for the most economical section of a triangular channel. | 07 | | | OR | | | (a) | Define (i) Reynold's number (ii) Mach number (iii) Weber number | 03 | | (b) | Write in detail about (i) Geometric similarity (ii) Kinematic similarity | 04 | | (c) | The efficiency η of a fan depends on the density ρ , dynamic viscosity μ , | 07 | | ` ′ | the angular velocity ω, Diameter D of the rotor and the discharge Q. | | | | Express η in terms of dimensionless parameters. | | | | (c) (a) (b) (c) (a) (b) | difference of pressure head between the two ends of a pipe 500 m apart is 3.5 m of water. Take value of friction factor = 0.04 (c) Derive Darcy–Weisbach equation for friction loss in the pipe. (a) Define (i) Prismatic channel (ii) Gradually varied flow (iii) Wetted perimeter (b) An irrigation lined canal of trapezoidal section has to carry a discharge of 12 cumec at a longitudinal slope of 0.00048. Find the dimensions of most economical section if channel has side slope of 3 horizontal to 2 vertical. Take Manning's constant n = 0.013. (c) Derive the geometrical conditions for the most economical section of a triangular channel. OR (a) Define (i) Reynold's number (ii) Mach number (iii) Weber number (b) Write in detail about (i) Geometric similarity (ii) Kinematic similarity (c) The efficiency η of a fan depends on the density ρ, dynamic viscosity μ, the angular velocity ω, Diameter D of the rotor and the discharge Q. |