GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III EXAMINATION - SUMMER 2025

Subject Code:3130907 Date:31-05-2025

Subject Name: Analog & Digital Electronics

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			Marks
Q.1	(a)	State all ideal characteristics of an opamp	03
	(b)	Describe Input Offset Voltage and Input Bias Current	04
	(c)	Describe the working of JK master slave FF with necessary truth	07
		tables and waveforms	
Q.2	(a)	Discuss the working of Zero Crossing Detector with necessary	03
	4 \	diagram and waveforms	
	(b)	Sketch the block diagram of an opamp and briefly explain the function of each block	04
	(c)	Discuss (i) CMRR (ii) Slew Rate	07
	(0)	OR	0.
	(c)	Explain the working of an Integrator with necessary diagrams	07
Q.3	(a)	Compare RC phase shift and Wien bridge oscillator	03
Q.S	(b)	A noninverting opamp with $R_1 = 1k\Omega$ and $R_F = 10k\Omega$ has	04
	(~)	following parameters:	•
		$A = 200,000$, $R_i = 2M\Omega$, $R_o = 75\Omega$, $f_o = 5Hz$, Supply voltages	
		= ± 15 V, Output Voltage Swing = ± 13 V.	
		Solve and find the values of A _F , R _{iF} , R _{oF}	
	(c)	Describe the working of Instrumentation Amplifier using	07
		opamp. List it's advantages and applications	
Q.3	(a)	OR Write a brief note on Voltage Follower circuit	03
Q.J	(b)	Compare a Comparator and Schmitt Trigger circuit	03
	(c)	Explain the working of closed loop opamp in non-inverting	07
	(-)	mode and derive the voltage gain formula	
0.4	(a)	Commons Combinational and Commontial Digital circuits	02
Q.4	(a) (b)	Compare Combinational and Sequential Digital circuits Discuss the applications of shift registers	03 04
	(c)	Minimize the following expressions using K maps:	07
	(0)	(i) $F = \Sigma m (4.5, 7, 12, 14, 15) + \Sigma d (3.8, 10)$	0.
		(ii) $F = \Pi M (0,3,7,8,9,10,11,15) \bullet \Pi d (2,4)$	
		OR	
Q.4	(a)	List the steps to be followed in Quine Mckluskey method	03
	(b)	Describe the working of a decimal to binary encoder with the	04
		help of logic diagram and truth table	0=
	(c)	Write a note on Ring Counter	07
Q.5	(a)	Explain the following terms of DAC:	03
-	, ,	a) Accuracy b) Resolution c) Setting time	
	(b)	Explain resolution and quantization error about ADC	04

	(c)	Draw & explain R-2R ladder D/A converter with necessary	07
		equations	
		OR	
Q.5	(a)	List Analog to Digital Converter ICs	03
	(b)	Illustrate different methods for analog to digital conversion	04
	(c)	Draw the block diagram and explain about a 3 terminal voltage regulator	07
