GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION - SUMMER 2024

Subject Code:3130907 Date:29-06-2024

Subject Name: Analog & Digital Electronics

Time:10:30 AM TO 01:00 PM **Total Marks:70**

Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary.
 Figures to the right indicate full marks.

		4. Simple and non-programmable scientific calculators are allowed.	Mark
Q.1	(a)	List all ideal characteristics of an Op-Amp.	03
V.1	(b)	Classify the types of negative feedback and explain each in brief.	04
	(c)	Draw and explain block diagram of a typical OP-AMP	07
Q.2	(a)	Compare the inverting and non-inverting comparators	03
	(b)	Explain how to generate triangular wave using OPAMP	04
	(c)	Draw the circuit Op-Amp as a Integrator and explain with necessary waveforms OR	07
	(c)	Explain positive peak detector circuit using OPAMP.	07
Q.3	(a)	Calculate maximum frequency for a sine wave, output voltage of 12 V peak with an OPAMP having slew rate 1 $V/\mu S$	03
	(b)	Explain the use of external offset voltage compensation circuits in op amps.	04
	(c)	Explain the working of J- K flip flop with the help of diagram OR	07
Q.3	(a)	Reduce the following function using Boolean Algebra's Laws and Theorems F=AB'C + B + BD' + ABD' + A'C	03
	(b)	Explain the operation of Zero crossing detector.	04
	(c)	Describe 3 to 8 line decoder with logic diagram and truth table.	07
Q.4	(a)	Compare decoder and demultiplexer.	03
	(b)	Draw and Explain 4-bit bidirectional Shift Register.	04
	(c)	Implement a full adder using 8 : 1 multiplexer.	07
ΩA	(a)	OR Differentiate the Asynchronous counter and Synchronous counter	03
Q.4	(a) (b)	Simply the following function using K map and implement using logic gates.	0.
	(2)	$F = \sum m(2,9,10,12,13) + D(15,14)$	Ū
	(c)	Explain full subtractor and construct full subtractor using half subtractors.	07
Q.5	(a)	Define following specification of ADC i) Resolution	03
	.	ii)Conversion time and iii) Quantization error	
	(b)	Explain R-2R ladder DAC with necessary diagram	04
	(c)	Describe operation of D/A converter with binary – weighted resistors OR	07
Q.5	(a)	Explain terms Accuracy and settling time for DAC	03
	(b)	What will be resolution of 4 bit ADC with 5V input? Define quantization error for ADC.	04
	(c)	Explain working of successive approximation type ADC	07
