GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION - SUMMER 2024

Subject Code:3130908 Date:16-07-2024

Subject Name: Applied Mathematics for Electrical Engineering

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Marks

- Q.1 (a) Write Newton's iteration formula for finding square root of a positive number N. Hence obtain the approximate value of √8 correct upto four decimal places.
 - (b) Using Gaussian three points quadrature formula, evaluate $\int_{-2}^{2} e^{-\frac{x}{2}} dx$.
 - (c) Write any two differences between Bisection method and Newton-Raphson method. Using Bisection method, find an approximate root of equation $x \cos x = 0$ taking a = 0.5 and b = 1 correct upto three decimal places.
- Q.2 (a) Evaluate $\int_0^6 \frac{1}{1+x} dx$ using the Simpson's $\frac{1}{3}$ rule taking h = 1.
 - (b) The table below gives the x and y. If y = a + bx then find the values of a odd and b by the least squares method.

X	1	2	3	4	5
у	3	4	5	6	8

(c) Apply Runge-Kutta fourth order method to calculate approximate values of y(0.1) and y(0.2) for the differential equation $\frac{dy}{dx} = x + y$; y(0) = 1 (Take h = 0.1).

ΛR

- (c) Using Euler's method find an approximate value of y(1.5) for the differential equation $\frac{dy}{dx} = xy$; y(1) = 5 (Take h = 0.1).
- Q.3 (a) Write normal equations to fit a parabola $y = ax^2 + bx + c$ by the least squares method.
 - (b) Define (i) Shift operator (E) (ii) Central difference operator (δ) (iii) **04** Forward difference operator (Δ). Hence prove that $\delta = \Delta E^{-\frac{1}{2}}$.
 - (c) State Newton's divided difference interpolation formula. Apply it to find an approximate value of y(2.75) using the following data.

	2.5	2.0	1.5	175	6.0	7.0
X	2.5	3.0	4.5	4.75	6.0	7.0
y(x)	8.85	11.45	20.66	22.85	38.6	55.6

OR

- Q.3 (a) Write normal equations to fit the curve $y = ae^{bx}$ by the least squares 03 method
 - (b) Use the following data to obtain approximate value of sin 52⁰ using Newton's forward interpolation formula:

x (in degree)	45	50	55	60
$\sin x^0$	0.7071	0.7660	0.8192	0.8660

	(c)	Given $f(x) = 1/x$ and nodes $x_0 = 2, x_1 = 2.75, x_2 = 4$. Using Lagrange's interpolation formula, fit a second degree polynomial to approximate the given function $f(x)$ using Lagrange's interpolation. Hence obtain the approximate value of $f(3)$ using it.							
Q.4	(a)	A box contains 8 items out of which 2 are defective. Let X denote the number of defective items. If a person selects 3 items from the box at random, find the expected number of defective items he has drawn.							
	(b)	A discrete random variable <i>X</i> has the following probability distribution: 0 4							
		$egin{array}{ c c c c c c c c c c c c c c c c c c c$							
		Find the value of k and the compute $P(X < 5)$.							
	(c)	In each of 4 races, the players have a 60 % chance of winning. Assuming	07						
		that the races are independent of each other and using Binomial distribution, find the probability that							
		(i) The player will win 0 race, 1 race, 2 races, 3 races or all 4 races.							
		(ii) The player will win at least 1 race.							
		(iii) The player will win majority of the races.							
Q.4	(a)	OR Define a Discrete probability density function. Write its properties.	03						
ζ	(b)	(b) The probability density function of a continuous random variable X is							
		$\left(\frac{2}{x}:1 < x < \infty\right)$							
		$f(x) = \begin{cases} \frac{2}{x^3} & \text{if } 1 < x < \infty \\ 0 & \text{if } elsewhere \end{cases}$							
		Find the cumulative distribution function (cdf) $F(x)$.							
	(c)	Let X be a continuous random variable with the probability density 07							
		function (pdf) $f(x) = kx(1 - x)$, $0 \le X \le 1$							
		Find k and a number b such that $P(X < b) = P(X \ge b)$							
Q.5	(a)	A random variable X has the following distribution:	03						
		X=x 0 1 2 3 4							
		P(x) = 0.6561 = 0.2916 = 0.0486 = 0.0036 = 0.0001							
	(b)	Find mean, variance and standard deviation. A continuous random variable <i>X</i> is distributed over the interval [1, 3] with 04							
	(~)	the probability distribution function (pdf) $f(x) = 4k(x-1)^4$, where k is							
		a constants. Find the value of <i>k</i> and mean.							
	(c)								
		$N = 100, \Sigma f d = 50, \Sigma f d^2 = 1970, \Sigma f d^3 = 2948, \Sigma f d^4 = 86752$ in which $d = x - 48$. Do you think that the distribution is platykurtic? Justify							
		your answer.							
0.5	()	OR	03						
Q.5	(a)	· · · · · · · · · · · · · · · · · · ·							
		and standard deviation 3. Find the bound of $P\{ X-8 \ge 6\}$ using Chebyshev's inequality.							
	(b)	·							
	(5)	25, 15, 23, 40, 27, 25, 23, 25, 20 Calculate the first form moments about the mean of the fallowing data	07						
	(c)	Calculate the first four moments about the mean of the following data. $X=x$ 0 1 2 3 4 5 6 7 8	07						
		P(x) 1 8 28 56 70 56 28 8 1							
