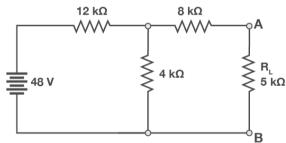
GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-III (NEW) EXAMINATION - WINTER 2024


Subject Code: 3130906	Date: 26-11-2024
	•

Subject Name: Electrical Circuit Analysis

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- Q.1 (a) Explain Norton's theorem. 03
 (b) State and explain Superposition theorem. 04
 (c) Determine the load current of Figure 1 using Thevenin's Theorem. 07

- Q.2 (a) Explain the initial condition in different passive electrical elements. 03
 What is the importance of initial conditions in network analysis?
 - (b) Formulate the step response of an R-L series circuit using the Laplace Transform method.
 - (c) Explain in detail about transient response in series R-C circuit having DC excitation.

OR

- (c) State and explain Maximum power transfer theorem with suitable example.
- Q.3 (a) Explain the importance of Dot convention in coupled circuit with suitable example.
 - (b) Discuss why. 04
 - (i) The current in inductor cannot change instantaneously.
 - (ii) The voltage across a capacitor cannot change instantaneously.
 - (c) Provide a detailed explanation of an ideal transformer. 07

OR

Q.3 (a) In terms of two terminal elements, define: 1) Unilateral elements, 2) 03

Passive elements, 3) Time-variant elements.

	(b)	Define unit parabola function. Obtain Laplace transform of unit parabola function.	04
	(c)	Define poles and zeros of network function. Explain significance of poles and zeros in different network functions.	07
Q.4	(a)	Obtain Laplace of Hyperbolic sine and cosine functions.	03
	(b)	Derive expression of Y parameters in terms of Z parameters.	04
	(c)	Prove Initial and Final Value theorems.	07
		OR	
Q.4	(a)	Specify the term (i) RMS values (ii) Apparent power (iii) Complex power.	03
	(b)	What is the condition of symmetry of all different two port parameters?	04
	(c)	State the Advantages of Laplace transform method over classical	07
		method.	
Q.5	(a)	Show that h parameters will not exit for a two port network where $Z_{22}=0$.	03
	(b)	Describe the solution of non-homogeneous differential equation for particular integral.	04
	(c)	Draw an equivalent circuit of a two port network in terms of (i) admittance parameters (ii) h- parameters.	07
		OR	
Q.5	(a)	Find out reciprocity condition for h-Parameters.	03
	(b)	Explain characteristic of an ideal voltage source.	04
	(c)	Evaluate Step by step solution to solve with suitable examples for electrical networks by using Thevenin's Theorem.	07